Leishmaniasis is a vector-borne disease caused by protozoal . Because of resistance development against current drugs, new antileishmanial compounds are urgently needed. Endoperoxides (EPs) are successfully used in malaria therapy, and experimental evidence of their potential against leishmaniasis exists. Anthracene endoperoxides (AcEPs) have so far been only technically used and not explored for their leishmanicidal potential. This study verified the in vitro efficiency and mechanism of AcEPs against both promastigotes and axenic amastigotes ( and ) as well as their toxicity in J774 macrophages. Additionally, the kinetics and radical products of AcEPs’ reaction with iron, the formation of radicals by AcEPs in , as well as the resulting impairment of parasite mitochondrial functions were studied. Using electron paramagnetic resonance combined with spin trapping, photometry, and fluorescence-based oximetry, AcEPs were demonstrated to (i) show antileishmanial activity in vitro at IC values in a low micromolar range, (ii) exhibit host cell toxicity in J774 macrophages, (iii) react rapidly with iron (II) resulting in the formation of oxygen- and carbon-centered radicals, (iv) produce carbon-centered radicals which could secondarily trigger superoxide radical formation in , and (v) impair mitochondrial functions in during parasite killing. Overall, the data of different AcEPs demonstrate that their structures besides the peroxo bridge strongly influence their activity and mechanism of their antileishmanial action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100073PMC
http://dx.doi.org/10.3390/molecules23071680DOI Listing

Publication Analysis

Top Keywords

mitochondrial functions
12
anthracene endoperoxides
8
toxicity j774
8
j774 macrophages
8
iron formation
8
carbon-centered radicals
8
aceps
5
activation anthracene
4
endoperoxides impairment
4
impairment mitochondrial
4

Similar Publications

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!