A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Land Use Regression Modelling of Outdoor NO₂ and PM Concentrations in Three Low Income Areas in the Western Cape Province, South Africa. | LitMetric

Air pollution can cause many adverse health outcomes, including cardiovascular and respiratory disorders. Land use regression (LUR) models are frequently used to describe small-scale spatial variation in air pollution levels based on measurements and geographical predictors. They are particularly suitable in resource limited settings and can help to inform communities, industries, and policy makers. Weekly measurements of NO₂ and PM were performed in three informal areas of the Western Cape in the warm and cold seasons 2015⁻2016. Seasonal means were calculated using routinely monitored pollution data. Six LUR models were developed (four seasonal and two annual) using a supervised stepwise land-use-regression method. The models were validated using leave-one-out-cross-validation and tested for spatial autocorrelation. Annual measured mean NO₂ and PM were 22.1 μg/m³ and 10.2 μg/m³, respectively. The NO₂ models for the warm season, cold season, and overall year explained 62%, 77%, and 76% of the variance (R²). The PM annual models had lower explanatory power (R² = 0.36, 0.29, and 0.29). The best predictors for NO₂ were traffic related variables (major roads, bus routes). Local sources such as grills and waste burning sites appeared to be good predictors for PM, together with population density. This study demonstrates that land-use-regression modelling for NO₂ can be successfully applied to informal peri-urban settlements in South Africa using similar predictor variables to those performed in Europe and North America. Explanatory power for PM models is lower due to lower spatial variability and the possible impact of local transient sources. The study was able to provide NO₂ and PM seasonal exposure estimates and maps for further health studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069062PMC
http://dx.doi.org/10.3390/ijerph15071452DOI Listing

Publication Analysis

Top Keywords

land regression
8
areas western
8
western cape
8
south africa
8
air pollution
8
lur models
8
models lower
8
explanatory power
8
no₂
7
models
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!