Multiple-Disease System in Coffee: From Crop Loss Assessment to Sustainable Management.

Annu Rev Phytopathol

UMR AGIR, Institut National de la Recherche Agronomique (INRA), Université de Toulouse, INPT, INP-EI Purpan, Castanet-Tolosan, France; email: ,

Published: August 2018

Assessment of crop loss due to multiple diseases and pests (D&P) is a necessary step in designing sustainable crop management systems. Understanding the drivers of D&P development and yield loss helps identify leverage points for crop health management. Crop loss assessment is also necessary for the quantification of D&P regulation service to identify promising systems where ecosystem service provision is optimized. In perennial crops, assessment of crop losses due to D&P is difficult, as injuries can affect yield over years. In coffee, one of the first perennials in which crop loss trials were implemented, crop losses concurrent with injuries were found to be approximately 50% lower than lagged losses that originated following the death of productive branches due to D&P. Crop losses can be assessed by field trials and surveys, where yield reduction factors such as the number of productive branches that have died are quantified, and by modeling, where damage mechanisms for each injury are considered over several years.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-phyto-080417-050117DOI Listing

Publication Analysis

Top Keywords

crop loss
16
crop losses
12
crop
9
loss assessment
8
assessment crop
8
productive branches
8
loss
5
d&p
5
multiple-disease system
4
system coffee
4

Similar Publications

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Optimizing nitrogen (N) sources has the potential to improve wheat tillering, nitrogen use efficiency (NUE), and grain yield, yet the underlying mechanisms remain unclear. This study hypothesizes that combining specific N sources can increase zeatin riboside + zeatin (ZR + ZT) content in tiller nodes and maintain a higher ZR + ZT/gibberellin A7 (GA) ratio, thereby promoting tiller development, enhancing NUE, and increasing yield. The effects of N source treatments on two wheat cultivars, the multi-spike Shannong 28 (SN28) and the large-spike Tainong 18 (TN18), were investigated.

View Article and Find Full Text PDF

Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical Data.

Sensors (Basel)

January 2025

Forest Biometrics and Remote Sensing Laboratory (Silva Lab), School of Forest, Fisheries, and Geomatics Sciences, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.

Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species.

View Article and Find Full Text PDF

Green revolution gene drives adaptation of Arabidopsis to the extremely high altitude.

Sci China Life Sci

January 2025

State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

To elucidate the process of adaptation, particularly the traits subject to natural selection and the molecular mechanisms underlying their natural variation, is one of the primary objectives of evolutionary biology. The uplifted landscape offers an excellent framework for understanding how organisms adapt to dramatic climatic gradients. To investigate the genetic basis of plant adaptation to the extremely high altitude, we first compared the genomic and phenotypic variations of two closely related Arabidopsis thaliana accessions from high altitude (Xizang, also known as "Tibet") and low altitude (Yunnan), respectively.

View Article and Find Full Text PDF

Destabilization of Soil Carbon After Saltwater Intrusion in Coastal Agricultural Soils.

Environ Sci Technol

January 2025

Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.

Saltwater intrusion (SWI) is a concerning issue impacting agricultural production and soil C cycling, which can have a wider effect on the climate. Complex soil processes driving soil C cycling following saltwater intrusion have not yet been fully quantified. Agricultural fields with varying degrees of saltwater intrusion, unaffected control, and native tidal marsh were studied to understand the impacts of saltwater intrusion on soil properties and soil carbon dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!