Prediction and diversity of tracrRNAs from type II CRISPR-Cas systems.

RNA Biol

a Department of Biochemistry, School of Biomedical Sciences , University of Otago, Dunedin , New Zealand.

Published: April 2019

Type II CRISPR-Cas9 systems require a small RNA called the trans-activating CRISPR RNA (tracrRNA) in order to function. The prediction of these non-coding RNAs in prokaryotic genomes is challenging because they have dissimilar structures, having short stems (3-6 bp) and non-canonical base-pairs e.g. G-A. Much of the tracrRNA is involved in base-pairing interactions with the CRISPR RNA, or itself, or in RNA-protein interactions with Cas9. Here we develop a new bioinformatic tool to predict tracrRNAs. On an experimentally verified test set the algorithm achieved a high sensitivity and specificity, and a low false discovery rate (FDR) on genome analysis. Analysis of representative RefSeq genomes (5462) detected 275 tracrRNAs from 165 genera. These tracrRNAs could be grouped into 15 clusters which were used to build covariance models. These clusters included Streptococci and Staphylococci tracrRNAs from the CRISPR-Cas9 systems which are currently used for gene editing. Compensating base changes observed in the models were consistent with the experimental structures of single guide RNAs (sgRNAs). Other clusters, for which there are not yet structures available, were predicted to form novel tracrRNA folds. These clusters included a large and divergent tracrRNA set from Bacteroidetes. These computational models contribute to the understanding of CRISPR-Cas biology, and will assist in the design of further engineered CRISPR-Cas9 systems. The tracrRNA prediction software is available through a galaxy web server.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546365PMC
http://dx.doi.org/10.1080/15476286.2018.1498281DOI Listing

Publication Analysis

Top Keywords

crispr-cas9 systems
12
crispr rna
8
clusters included
8
tracrrnas
5
tracrrna
5
prediction diversity
4
diversity tracrrnas
4
tracrrnas type
4
type crispr-cas
4
systems
4

Similar Publications

Fibroblasts display complex functions associated with distinct gene expression profiles that influence matrix production and cell communications and the autonomy of tissue development and repair. Thrombospondin-2 (TSP-2), produced by fibroblasts, is a potent angiogenesis inhibitor and negatively associated with tissue repair. Single-cell (sc) sequencing analysis on WT and TSP2KO skin fibroblasts demonstrate distinct cell heterogeneity.

View Article and Find Full Text PDF

Potato ( ) is the third most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags relative to other major food crops due primarily to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan', which possesses all essential characteristics for facile functional genomics studies.

View Article and Find Full Text PDF

Successful transgenesis in model organisms has dramatically helped us understand gene function, regulation, genetic networks, and potential applications. Here, we introduce the universal single-copy knock-in system (Universal SKI System or U-SKI), designed for inserting any transgene by CRISPR/Cas9 in the genome. The Universal SKI System takes advantage of a plasmid (pSKI), which can also be used for extrachromosomal arrays, to facilitate the insertion of a transgene at specific safe harbor loci on each autosomal chromosome.

View Article and Find Full Text PDF

CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has revolutionized gene editing tools and paved the way for innovations in medical research for disease diagnosis and treatment. However, better specificity and efficient delivery of this gene machinery make it challenging to successfully edit genes for treating various diseases. This is mainly due to cellular barriers, instability in biological environments, and various off-target effects that prohibit safe and efficient delivery under in vivo conditions.

View Article and Find Full Text PDF

In the post-COVID-19 era, drug-resistant bacterial infections emerge as one of major death causes, where multidrug-resistant Acinetobacter baumannii (MRAB) and drug-resistant Pseudomonas aeruginosa (DRPA) represent primary pathogens. However, the classical antibiotic strategy currently faces the bottleneck of drug resistance. We develop an antimicrobial strategy that applies the selective delivery of CRISPR/Cas9 plasmids to pathogens with biomimetic cationic hybrid vesicles (BCVs), irrelevant to bacterial drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!