Human pluripotent stem cells (hPSCs) are promising therapeutic tools for regenerative therapies and disease modeling. Differentiation of cultured hPSCs is influenced by both exogenous factors added to the cultures and endogenously secreted molecules. Optimization of protocols for the differentiation of hPSCs into different cell types is difficult because of the many variables that can influence cell fate. We present microfluidic devices designed to perform three- and four-factor, two-level full factorial experiments in parallel for investigating and directly optimizing hPSC differentiation. These devices feature diffusion-isolated, independent culture wells that allow for control of both exogenous and endogenous cellular signals and that allow for immunocytochemistry (ICC) and confocal microscopy in situ. These devices are fabricated by soft lithography in conjunction with 3D-printed molds and are operable with a single syringe pump, eliminating the need for specialized equipment or cleanroom facilities. Their utility was demonstrated by on-chip differentiation of hPSCs into the auditory neuron lineage. More broadly, these devices enable multiplexing for experimentation with any adherent cell type or even multiple cell types, allowing efficient investigation of the effects of medium conditions, pharmaceuticals, or other soluble reagents.

Download full-text PDF

Source
http://dx.doi.org/10.1177/2472630318783497DOI Listing

Publication Analysis

Top Keywords

full factorial
8
human pluripotent
8
pluripotent stem
8
differentiation hpscs
8
cell types
8
devices
5
cell
5
differentiation
5
factorial microfluidic
4
microfluidic designs
4

Similar Publications

This study investigated the properties of films based on avocado () seed starch. A full factorial experimental design was performed using different amounts of starch (3-5 %) and glycerol (0.75-1.

View Article and Find Full Text PDF

This article explores the family policies-fertility nexus by assessing the potential impact of parental leaves, childcare services, and child benefits on fertility through a factorial survey experiment (FSE). We focus on Italy, where persistently low fertility rates are often linked to limited welfare support for families. We surveyed 4,022 respondents aged 20-44 and exposed them to various scenarios characterized by different family policy packages.

View Article and Find Full Text PDF

Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.

World J Microbiol Biotechnol

January 2025

Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.

Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.

View Article and Find Full Text PDF

Direct Hot Solid-Liquid Extraction (DH-SLE): A High-Yield Greener Technique for Lipid Recovery from Coffee Beans.

Plants (Basel)

January 2025

Departamento de Química, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil.

Soxhlet extraction is a method recommended by the Association of Official Analytical Chemists (AOAC) to determine the lipid content in plant samples. Generally, n-hexane (toxicity grade 5) is used as the solvent (≈300 mL; ≈30 g sample) at boiling temperatures (69 °C) for long times (≤16 h) under a chilled water reflux (≈90 L/h), proportionally aggravated by the number of repetitions and samples determined. In this sense, the technique is neither safe nor sustainable for the analyst or the environment.

View Article and Find Full Text PDF

Formulation, development and in vivo characterization of selegiline hydrochloride nanostructured lipid nanocarrier loaded microneedle array patch for depression.

Int J Pharm

January 2025

Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India. Electronic address:

Depression is a common mental condition causing depressed mood and loss of pleasure. The primary treatment approach for the management of depression consists of the use of selegiline (MAO-B) inhibitor compound. The present work aimed to develop and optimize selegiline-loaded nanostructured lipid carriers for transdermal application, utilizing a 2 full factorial design approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!