Signaling pathways governing iron homeostasis in budding yeast.

Mol Microbiol

I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

Published: August 2018

Iron is an essential element for eukaryotes as it participates as a redox-active co-factor in many biological processes. Since iron is also potentially toxic, iron levels are carefully regulated. In the yeast Saccharomyces cerevisiae, iron homeostasis is maintained by the transcriptional control of the iron acquisition systems (iron regulon), mainly by the iron-responsive transcriptional factors Aft1p and Yap5p. Intracellular iron is stored in the vacuole, mobilized for other locations when necessary, particularly for the mitochondria, the major site of iron-utilizing pathways. Mitochondria also play an additional role as a sensor for the regulation of cellular iron acquisition and intracellular distribution. Mounting evidence suggest that iron acquisition systems are not only responsive to iron levels but also to signaling pathways. The most recognized is the activation of the iron regulon at the diauxic shift, oppositely regulated by PKA and SNF1 kinases, major regulators of glucose signaling. Hog1p, a MAP kinase involved in stress responses, also negatively regulates iron uptake by phosphorylating Aft1p. In this review, we address organellar signaling and signal transduction pathways that play a major role in the coordination of iron homeostasis with cell growth and division.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.14009DOI Listing

Publication Analysis

Top Keywords

iron
14
iron homeostasis
12
iron acquisition
12
signaling pathways
8
iron levels
8
acquisition systems
8
iron regulon
8
signaling
4
pathways governing
4
governing iron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!