The intracellular pH (pHi) in the cytosol of mammalian central neurons is tightly regulated and small pHi-fluctuations are deemed to modulate inter-/intracellular signaling, excitability, and synaptic plasticity. The resting pHi of young rodent hippocampal pyramidal neurons is known to decrease alongside aging for about 0.1 pH-units. There is no information about the relationship between age and pHi of human central neurons. We addressed this knowledge gap using 26 neocortical slices from 12 patients (1-56-years-old) who had undergone epilepsy surgery. For fluorometric recordings, the slice-neurons were loaded with the pHi-sensitive dye BCECF-AM. We found that the pyramidal cells' resting pHi (n = 26) descended linearly alongside aging (r = - 0.71, p < 0.001). This negative relationship persisted, when the sample was confined to specific brain regions (i.e., middle temporal gyrus, 23 neurons, r = - 0.68, p < 0.001) or pathologies (i.e., hippocampus sclerosis, 8 neurons, r = - 0.78, p = 0.02). Specifically, neurons (n = 9, pHi 7.25 ± 0.12) from young children (1.5 ± 0.46-years-old) were significantly more alkaline than neurons from adults (n = 17, 38.53 ± 12.38 years old, pHi 7.08 ± 0.07, p < 0.001). Although the samples were from patients with different pathologies the results were in line with those from the rodent hippocampal pyramidal neurons. Like a hormetin, the age-related mild pHi-decrease might contribute to neuroprotection, e.g., via limiting excitotoxicity. On the other hand, aging cortical neurons could become more vulnerable to metabolic overstress by a successive pHi-decrease. Certainly, its impact for the dynamics in short and long-term synaptic plasticity and, ultimately, learning and memory provides a challenge for further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00702-018-1904-2 | DOI Listing |
Neurotox Res
January 2025
Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.
To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India.
Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
January 2025
Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea.
Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; Nakhornsawan campus, Mahidol University, Nakhonsawan, Thailand. Electronic address:
Our previous studies revealed a mating attractant or possibly a pheromone released from molting reproductive mature female prawns, Macrobrachium rosenbergii, stimulates the expression of insulin-like androgenic gland hormones in a co-culture system. The released attractant is perceived by olfactory receptors with setae located on the short lateral antennules (slAn), which connect to the olfactory neuropil in the central nervous system (CNS) of male prawns. This neural signaling propagating through the CNS is mediated by at least four neuropeptides, namely neuropeptide F (NPF), short NPF (sNPF), tachykinin (TK), and allatostatin-A (ATS-A) whose transcripts have been detected in the present study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!