The present study evaluated the effects of hypercholesterolemia in response to conditioned aversive stimuli in mice. Specifically, (a) young (3 months old) and aged (24 months old) female C57Bl/6 mice were fed daily for 4 weeks with a standard rodent diet or an enriched cholesterol diet (ECD) and then subjected to the contextual fear conditioning test. In another experimental set, 3-month-old C576Bl/6 female mice, fed daily during the 4 weeks with the standard rodent diet or ECD, were subjected to the contextual fear conditioning test and received vehicle or scopolamine (0.37 mg/kg; intraperitoneally) immediately after the training session. (b) 12-month-old C576Bl/6 and low-density lipoprotein receptor knockout mice (LDLr) female mice were subjected to the contextual fear conditioning test. In another experimental set, they were subjected to the contextual fear conditioning test and received vehicle or donepezil (3.0 mg/kg; intraperitoneally) immediately after the training session. The present results show that (a) the ECD specifically impaired retrieval of contextual fear memory in aged mice; (b) an ineffective dose of scopolamine impaired fear memory consolidation in young mice fed the ECD; (c) LDLr mice presented impaired contextual fear memory retrieval; and (d) boosting cholinergic neurotransmission with a single donepezil administration at the consolidation window led to improved fear memory consolidation in LDLr mice. These findings suggest that high levels of cholesterol induced by either an ECD or a genetic deletion of LDLr decreased freezing behavior on the contextual fear conditioning test, which seemed to involve dysfunction of the cholinergic system.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0000000000001091DOI Listing

Publication Analysis

Top Keywords

contextual fear
32
fear conditioning
24
conditioning test
20
subjected contextual
16
fear memory
16
female mice
12
mice fed
12
fear
10
mice
10
contextual
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!