As the interest in event-based vision sensors for mobile and aerial applications grows, there is an increasing need for high-speed and highly robust algorithms for performing visual tasks using event-based data. As event rate and network structure have a direct impact on the power consumed by such systems, it is important to explore the efficiency of the event-based encoding used by these sensors. The work presented in this paper represents the first study solely focused on the effects of both spatial and temporal downsampling on event-based vision data and makes use of a variety of data sets chosen to fully explore and characterize the nature of downsampling operations. The results show that both spatial downsampling and temporal downsampling produce improved classification accuracy and, additionally, a lower overall data rate. A finding is particularly relevant for bandwidth and power constrained systems. For a given network containing 1000 hidden layer neurons, the spatially downsampled systems achieved a best case accuracy of 89.38% on N-MNIST as opposed to 81.03% with no downsampling at the same hidden layer size. On the N-Caltech101 data set, the downsampled system achieved a best case accuracy of 18.25%, compared with 7.43% achieved with no downsampling. The results show that downsampling is an important preprocessing technique in event-based visual processing, especially for applications sensitive to power consumption and transmission bandwidth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2017.2785272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!