This paper investigates the stability problem of Markovian neural networks (MNNs) with time delay. First, to reflect more realistic behaviors, more generalized transition rates are considered for MNNs, where all transition rates of some jumping modes are completely unknown. Second, a new approach, namely time-delay-dependent-matrix (TDDM) approach, is proposed for the first time. The TDDM approach is associated with both time delay and its time derivative. Thus, the TDDM approach can fully capture the information of time delay and would play a key role in deriving less conservative results. Third, based on the TDDM approach and applying Wirtinger's inequality and improved reciprocally convex inequality, stability criteria are derived. In comparison with some existing results, our results are not only less conservative but also involve lower calculation complexity. Finally, numerical examples are provided to show the effectiveness and advantages of the proposed results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2018.2843771 | DOI Listing |
Animals (Basel)
February 2024
Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
The response of feedstuffs to thermal processing depends on the type of feed and the thermal processing methods being applied. Steam pressure toasting (SPT) has been used to modify the nutrient degradability and enhance the nutritional quality of pulses, including faba bean seeds (FBS). Strategic feeding approaches are essential for balancing diets and maintaining adequate nutrition, especially in high-performing ruminants.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
February 2019
This paper investigates the stability problem of Markovian neural networks (MNNs) with time delay. First, to reflect more realistic behaviors, more generalized transition rates are considered for MNNs, where all transition rates of some jumping modes are completely unknown. Second, a new approach, namely time-delay-dependent-matrix (TDDM) approach, is proposed for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!