Simulating frictional contact between objects with complex geometry is important for 6-DoF haptic rendering applications. For example, friction determines whether components can be navigated past narrow clearances in virtual assembly. State-of-the-art haptic rendering of frictional contact either augments penalty contact with frictional penalty springs, which do not prevent sliding and cannot render correct static friction, or uses constraint-based methods that are difficult to meet the stringent haptic loop computation time requirements for complex geometry. We give a 6-DoF Coulomb friction haptic rendering algorithm for distributed contact between rigid objects with complex geometry. Our algorithm is compatible with the fast point vs implicit function penalty-based contact method such as the Voxmap-PointShell method. Our algorithm incorporates the maximal dissipation principle and produces correct static friction, all the while inheriting the speed of penalty-based methods. We demonstrate our algorithm on several challenging 6-DoF haptic rendering examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TOH.2018.2803172 | DOI Listing |
Sensors (Basel)
December 2024
Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada.
The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance.
View Article and Find Full Text PDFFront Robot AI
November 2024
Clinical, Educational and Health Psychology, University College London, London, United Kingdom.
Human affective touch is known to be beneficial for social-emotional interactions and has a therapeutic effect. For touch initiated by robotic entities, richer affective affordance is a critical enabler to unlock its potential in social-emotional interactions and especially in care and therapeutic applications. Simulating the attributes of particular types of human affective touch to inform robotic touch design can be a beneficial step.
View Article and Find Full Text PDFNature
November 2024
Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
The rich set of mechanoreceptors found in human skin offers a versatile engineering interface for transmitting information and eliciting perceptions, potentially serving a broad range of applications in patient care and other important industries. Targeted multisensory engagement of these afferent units, however, faces persistent challenges, especially for wearable, programmable systems that need to operate adaptively across the body. Here we present a miniaturized electromechanical structure that, when combined with skin as an elastic, energy-storing element, supports bistable, self-sensing modes of deformation.
View Article and Find Full Text PDFHaptic simulation of needle insertion requires both a needle-tissue interaction model and a method to render the outputs of this model into real-time force feedback for the user. In comparison with interaction models, rendering methods in the literature have seen little development and are either oversimplified or too computationally complex. Therefore, this study introduces the Generalized Tracking Wall (GTW) approach, a haptic rendering method inspired by the proxy approach.
View Article and Find Full Text PDFPNAS Nexus
October 2024
Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!