Self-assembled peptide nanostructures are being intensively investigated due to their potential applications such as biosensors, piezotransducers, and microactuators. It was predicted that their formation and hence piezoelectric property strongly depend on the water content and acidity of the stock solution. In this paper, simple diphenylalanine (FF) tubular structures were fabricated from the solutions with added hydrochloric acid in order to understand the influence of chloride ions on the self-assembly process and resulting piezoelectricity. Low-frequency Raman scattering, atomic, and piezoresponse force microscopies were used to characterize both the morphology and piezoelectric properties of the grown samples. The mechanism of chloride anions' effect on the formation of self-assembled peptide nanostructures is discussed based on the acquired Raman data and quantum-chemical modeling. It is shown that the addition of chloride anions causes a significant reduction of the dipole moments of FF tubes accompanied with the concomitant decrease of tube dimensions and apparent shear piezoelectric coefficients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2018.2850046 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.
View Article and Find Full Text PDFDiscov Nano
January 2025
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain.
Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
HRP, or horseradish peroxidase, is a reporter enzyme with extensive use in biotechnological applications. We previously reported the purification and characterization of two anionic peroxidases from L. var (black radish) roots.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ulsan National Institute of Science and Technology, Department of Chemistry, UNIST GIL 50, 44919, Ulsan, KOREA, REPUBLIC OF.
Efficient separation of hydrogen isotopes, especially deuterium (D2), is pivotal for advancing industries such as nuclear fusion, semiconductor processing, and metabolic imaging. Current technologies, including cryogenic distillation and Girdler sulfide processes, suffer from significant limitations in selectivity and cost-effectiveness. Herein, we introduce a novel approach utilizing an imidazolium-based Metal-Organic Framework (MOF), JCM-1, designed to enhance D2/H2 separation through temperature-dependent gate-opening controlled by ion exchange.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!