This paper proposes a Hybrid Approximate Representation (HAR) based on unifying several efficient approximations of the generalized reprojection error (which is known as the gold standard for multiview geometry). The HAR is an over-parameterization scheme where the approximation is applied simultaneously in multiple parameter spaces. A joint minimization scheme "HAR-Descent" can then solve the PnP problem efficiently, while remaining robust to approximation errors and local minima. The technique is evaluated extensively, including numerous synthetic benchmark protocols and the real-world data evaluations used in previous works. The proposed technique was found to have runtime complexity comparable to the fastest O(n) techniques, and up to 10 times faster than current state of the art minimization approaches. In addition, the accuracy exceeds that of all 9 previous techniques tested, providing definitive state of the art performance on the benchmarks, across all 90 of the experiments in the paper and supplementary material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2018.2806446.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2018.2806446 | DOI Listing |
Entropy (Basel)
December 2024
Department of Statistics, Federal University of Bahia, Salvador 40170-110, Brazil.
Singular spectrum analysis is a powerful nonparametric technique used to decompose the original time series into a set of components that can be interpreted as trend, seasonal, and noise. For their part, neural networks are a family of information-processing techniques capable of approximating highly nonlinear functions. This study proposes to improve the precision in the prediction of air quality.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Exact exchange contributions included in density functional theory calculations have rendered excellent electronic structure results on both cold and extremely hot matter. In this work, we develop a mixed deterministic-stochastic resolution-of-the-identity compressed exchange (mRICE) method for efficient calculation of exact and hybrid electron exchange, suitable for applications alongside mixed stochastic-deterministic density functional theory. mRICE offers accurate calculations of the electronic structure at a largely reduced computation time compared to other compression algorithms, such as Lin's adaptive compressed exchange, for the warm dense matter.
View Article and Find Full Text PDFSci Rep
January 2025
Civil Engineering Department, Kardan University, Kabul, Afghanistan.
The current research deals with analytical analysis of Marangoni convection on ethylene glycol base hybrid nanofluid two-dimension flow with viscous dissipation through a porous medium, which have some important application in mechanical, civil, electronics, and chemical engineering. Two types of nanoparticles one is sliver and other is graphene oxide and ethylene glycol is used as base fluid in this research work. The authors applied appropriate transformations to convert a collection of dimension form of nonlinear partial differential equations to dimensionless form of nonlinear ordinary differential equations.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Centre for Addiction and Mental Health, Toronto, ON, Canada.
Background: The onset of the COVID-19 pandemic precipitated a rapid shift to virtual care in health care settings, inclusive of mental health care. Understanding clients' perspectives on virtual mental health care quality will be critical to informing future policies and practices.
Objective: This study aimed to outline the process of redesigning and validating the Virtual Client Experience Survey (VCES), which can be used to evaluate client and family experiences of virtual care, specifically virtual mental health and addiction care.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!