In this paper, we develop a comprehensive conceptual and algorithmic framework to cope with a problem of clustering homogeneous information granules. While there have been several approaches to coping with granular (viz. non-numeric) data, the origin of granular data themselves considered there is somewhat unclear and, as a consequence, the results of clustering start lacking some full-fledged interpretation. In this paper, we offer a holistic view at clustering information granules and an evaluation of the results of clustering. We start with a process of forming information granules with the use of the principle of justifiable granularity (PJG). With this regard, we discuss a number of parameters used in this development of information granules as well as quantify the quality of the granules produced in this manner. In the sequel, Fuzzy C -Means is applied to cluster the derived information granules, which are represented in a parametric manner and associated with weights resulting from the usage of the PJG. The quality of clustering results is evaluated through the use of the reconstruction criterion (quantifying the concept of information granulation and degranulation). A suite of experiments using synthetic and publicly available datasets is reported to quantify the performance of the proposed approach and highlight its key features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2018.2802453 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!