Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the importance of nuclear structure in cancer diagnosis, several predictive models have been described for diagnosing a wide variety of cancers based on nuclear morphology. In many computer-aided diagnosis (CAD) systems, cancer detection tasks can be generally formulated as set classification problems, which can not be directly solved by classifying single instances. In this paper, we propose a novel set classification approach SetSVM to build a predictive model by considering any nuclei set as a whole without specific assumptions. SetSVM features highly discriminative power in cancer detection challenges in the sense that it not only optimizes the classifier decision boundary but also transfers discriminative information to set representation learning. During model training, these two processes are unified in the support vector machine (SVM) maximum separation margin problem. Experiment results show that SetSVM provides significant improvements compared with five commonly used approaches in cancer detection tasks utilizing 260 patients in total across three different cancer types, namely, thyroid cancer, liver cancer, and melanoma. In addition, we show that SetSVM enables visual interpretation of discriminative nuclear characteristics representing the nuclei set. These features make SetSVM a potentially practical tool in building accurate and interpretable CAD systems for cancer detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2018.2803793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!