We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code has been made available at: https://github.com/facebookresearch/Detectron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2018.2844175 | DOI Listing |
NPJ Biofilms Microbiomes
January 2025
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russia.
Biofilms are critical for understanding environmental processes, developing biotechnology applications, and progressing in medical treatments of various infections. Nowadays, a key limiting factor for biofilm analysis is the difficulty in obtaining large datasets with fully annotated images. This study introduces a versatile approach for creating synthetic datasets of annotated biofilm images with employing deep generative modeling techniques, including VAEs, GANs, diffusion models, and CycleGAN.
View Article and Find Full Text PDFWaste Manag
January 2025
ZheJiang University, Department of Mechanical Engineering, ZheJiang, 310000, China.
With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.
AI-based breast cancer detection can improve the sensitivity and specificity of detection, especially for small lesions, which has clinical value in realizing early detection and treatment so as to reduce mortality. The two-stage detection network performs well; however, it adopts an imprecise ROI during classification, which can easily include surrounding tumor tissues. Additionally, fuzzy noise is a significant contributor to false positives.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Artificial Intelligence Development Center, Changhua Christian Hospital, Changhua 50050, Taiwan.
: Microcalcifications in the breast are often an early warning sign of breast cancer, and their accurate detection is crucial for the early discovery and management of the disease. In recent years, deep learning technology, particularly models based on object detection, has significantly improved the ability to detect microcalcifications. This study aims to use the advanced YOLO-v8 object detection algorithm to identify breast microcalcifications and explore its advantages in terms of performance and clinical application.
View Article and Find Full Text PDFPeerJ
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Objective: The study aims to develop a diagnostic model using intraoral photographs to accurately detect and classify early detection of enamel demineralization on tooth surfaces.
Methods: A retrospective analysis was conducted with 208 patients aged 14 to 44. A total of 624 high-quality digital images captured under standardized conditions were used to construct a deep learning model based on the Mask region-based convolutional neural network (Mask R-CNN).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!