This study aimed to develop a novel electromyography (EMG)-based neural-machine interface (NMI) that is user-generic for continuously predicting coordinated motion between metacarpophalangeal (MCP) and wrist flexion/extension. The NMI requires a minimum calibration procedure that only involves capturing maximal voluntary muscle contraction for the monitored muscles for individual users. At the center of the NMI is a user-generic musculoskeletal model based on the experimental data collected from 6 able-bodied (AB) subjects and 9 different upper limb postures. The generic model was evaluated on-line on both AB subjects and a transradial amputee. The subjects were instructed to perform a virtual hand/wrist posture matching task with different upper limb postures. The on-line performance of the generic model was also compared with that of the musculoskeletal model customized to each individual user (called "specific model"). All subjects accomplished the assigned virtual tasks while using the user-generic NMI, although the AB subjects produced better performance than the amputee subject. Interestingly, compared to the specific model, the generic model produced comparable completion time, a reduced number of overshoots, and improved path efficiency in the virtual hand/wrist posture matching task. The results suggested that it is possible to design an EMG-driven NMI based on a musculoskeletal model that could fit multiple users, including upper limb amputees, for predicting coordinated MCP and wrist motion. The present new method might address the challenges of existing advanced EMG-based NMI that require frequent and lengthy customization and calibration. Our future research will focus on evaluating the developed NMI for powered prosthetic arms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2018.2838448DOI Listing

Publication Analysis

Top Keywords

musculoskeletal model
16
upper limb
12
generic model
12
model
8
neural-machine interface
8
nmi user-generic
8
predicting coordinated
8
mcp wrist
8
limb postures
8
virtual hand/wrist
8

Similar Publications

Introduction: Shoulder stabilization surgery is common among military personnel, causing severe acute postoperative pain that may contribute to the development of chronic pain, thereby reducing military readiness. Battlefield Acupuncture (BFA) has shown promise as a non-pharmaceutical intervention for acute postoperative pain. The purpose of this study was to determine the effectiveness of BFA combined with standard physical therapy on pain, self-reported mood, self-reported improvement, and medication use in patients after shoulder stabilization surgery.

View Article and Find Full Text PDF

The Three-Class Annotation Method Improves the AI Detection of Early-Stage Osteosarcoma on Plain Radiographs: A Novel Approach for Rare Cancer Diagnosis.

Cancers (Basel)

December 2024

Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.

: Developing high-performance artificial intelligence (AI) models for rare diseases is challenging owing to limited data availability. This study aimed to evaluate whether a novel three-class annotation method for preparing training data could enhance AI model performance in detecting osteosarcoma on plain radiographs compared to conventional single-class annotation. : We developed two annotation methods for the same dataset of 468 osteosarcoma X-rays and 378 normal radiographs: a conventional single-class annotation (1C model) and a novel three-class annotation method (3C model) that separately labeled intramedullary, cortical, and extramedullary tumor components.

View Article and Find Full Text PDF

: Long-term work-related musculoskeletal disorders are predominantly influenced by factors such as the duration, intensity, and repetitive nature of load lifting. Although traditional ergonomic assessment tools can be effective, they are often challenging and complex to apply due to the absence of a streamlined, standardized framework. Recently, integrating wearable sensors with artificial intelligence has emerged as a promising approach to effectively monitor and mitigate biomechanical risks.

View Article and Find Full Text PDF

Background: Chronic pelvic pain is a common yet undertreated condition that significantly impacts quality of life for women worldwide. Digital exercise therapy designed to target pelvic pain can improve symptomology while reducing time and cost-related barriers to in-person clinical care.

Methods: This longitudinal, observational study of a digital women's pelvic health program examined pelvic pain, anxiety, and depression at 4 and 12 weeks in female adults experiencing chronic pelvic pain.

View Article and Find Full Text PDF

Scapular morphological attributes show promise as prognostic indicators of retear following rotator cuff repair. Current evaluation techniques using single-slice magnetic-resonance imaging (MRI) are, however, prone to error, while more accurate computed tomography (CT)-based three-dimensional techniques, are limited by cost and radiation exposure. In this study we propose deep learning-based methods that enable automatic scapular morphological analysis from diagnostic MRI despite the anisotropic resolution and reduced field of view, compared to CT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!