The goal of image pre-compensation is to process an image such that after being convolved with a known kernel, will appear close to the sharp reference image. In a practical setting, the pre-compensated image has significantly higher dynamic range than the latent image. As a result, some form of tone mapping is needed. In this paper, we show how global tone mapping functions affect contrast and ringing in image pre-compensation. We further enhance contrast and reduce ringing by considering the visual saliency. Specifically, we prioritize contrast preservation in salient regions while tolerating more blurriness elsewhere. For quantitative analysis, we design new metrics to measure the contrast of an image with ringing. Specifically, we set out to find its "equivalent ringing-free" image that matches its intensity histogram and uses its contrast as the measure. We illustrate our approach on projector defocus compensation and visual acuity enhancement. Compared with the state-of-the-art, our approach significantly improves the contrast. We also perform user studies to demonstrate that our method can effectively improve the viewing experience for users with impaired vision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2018.2839115 | DOI Listing |
The use of wavefront shaping has found extensive application to develop ultra-thin endoscopic techniques based on multimode optical fibers (MMF), leveraging on the ability to control modal interference at the fiber's distal end. Although several techniques have been developed to achieve MMF-based laser-scanning imaging, the use of short laser pulses is still a challenging application. This is due to the intrinsic delay and temporal broadening introduced by the fiber itself, which requires additional compensation optics on the reference beam during the calibration procedure.
View Article and Find Full Text PDFWe propose a holographic display system for complex amplitude modulation (CAM) using a phase-only spatial light modulator (SLM) and two polarization gratings (PG). The two sub-holograms of the complex-amplitude computed generated hologram (CGH) are loaded in different regions of SLM. Two diffractive components couple in space after longitudinal migration from the double PGs, and finally interfered through the line polarizer.
View Article and Find Full Text PDFWe propose a lightguide-type super multi-view near-eye display that uses a digital micromirror device and a LED array. The proposed method presents three-dimensional images with a natural monocular depth cue using a compact combiner optics which consists of a thin lightguide and holographic optical elements (HOEs). Feasibility of the proposed method is verified by optical experiments which demonstrate monocular three-dimensional image presentation over a wide depth range.
View Article and Find Full Text PDFSci Rep
November 2022
Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain.
We present a co-axial acoustic-based optical coherence vibrometry probe (CoA-OCV) for vibro-acoustic resonance quantification in biological tissues. Sample vibrations were stimulated via a loudspeaker, and pre-compensation was used to calibrate the acoustic spectrum. Sample vibrations were measured via phase-sensitive swept-source optical coherence tomography (OCT).
View Article and Find Full Text PDFSensors (Basel)
September 2022
Intelligent Photoelectric Multi-Dimensional Sensing Laboratory, Hebei University of Technology, Tianjin 300400, China.
The camera and projector are indispensable hardware parts of a color fringe projection 3D measurement system. Chromatic aberration between different color channels of the projector and camera has an impact on the measurement accuracy of the color fringe projection 3D profile measurement. There are many studies on camera calibration, but the chromatic aberration of the projector remains a question deserving of further investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!