Surface electromyography (sEMG) is a promising computer access method for individuals with motor impairments. However, optimal sensor placement is a tedious task requiring trial-and-error by an expert, particularly when recording from facial musculature likely to be spared in individuals with neurological impairments. We sought to reduce the sEMG sensor configuration complexity by using quantitative signal features extracted from a short calibration task to predict human-machine interface (HMI) performance. A cursor control system allowed individuals to activate specific sEMG-targeted muscles to control an onscreen cursor and navigate a target selection task. The task was repeated for a range of sensor configurations to elicit a range of signal qualities. Signal features were extracted from the calibration of each configuration and examined via a principle component factor analysis in order to predict the HMI performance during subsequent tasks. Feature components most influenced by the energy and the complexity of the EMG signal and muscle activity between the sensors were significantly predictive of the HMI performance. However, configuration order had a greater effect on performance than the configurations, suggesting that non-experts can place sEMG sensors in the vicinity of usable muscle sites for computer access and healthy individuals will learn to efficiently control the HMI system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089655PMC
http://dx.doi.org/10.1109/TNSRE.2018.2849202DOI Listing

Publication Analysis

Top Keywords

hmi performance
12
sensor configurations
8
human-machine interface
8
computer access
8
signal features
8
features extracted
8
prediction optimal
4
optimal facial
4
facial electromyographic
4
sensor
4

Similar Publications

Detecting Hemorrhagic Myocardial Infarction With 3.0-T CMR: Insights Into Spatial Manifestation, Time-Dependence, and Optimal Acquisitions.

JACC Cardiovasc Imaging

January 2025

Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:

Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.

View Article and Find Full Text PDF

We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.

View Article and Find Full Text PDF

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Background: Simultaneous and proportional control (SPC) based on surface electromyographic (sEMG) signals has emerged as a research hotspot in the field of human-machine interaction (HMI). However, the existing continuous motion estimation methods mostly have an average Pearson coefficient (CC) of less than 0.85, while high-precision methods suffer from the problem of long inference time (> 200 ms) and can only estimate SPC of less than 15 hand movements, which limits their applications in HMI.

View Article and Find Full Text PDF

Driving is a multifaceted activity involving a complex interplay of cognitive, perceptual, and motor skills, demanding continuous attention on the road. In recent years, the increased integration of automation and digitalization technologies in vehicles has improved drivers' convenience and safety. However, the spare attentional capacity available during automation and the prevalence of various infotainment systems in vehicles enable drivers to perform some secondary tasks not related to driving, which may divert their attention away from the road, increasing the chances of accidents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!