AI Article Synopsis

  • TP53, known as the "guardian of the genome," is a commonly mutated gene in various cancers, including gastric cancer (GC), but its specific clinical implications in GC are not well understood.
  • The study focused on analyzing the positions of TP53 mutations to see how they might influence clinical outcomes in GC, examining aspects like mutation locations, hotspots, and their impact on protein structure.
  • Results indicated that mutations in specific structural regions of TP53 were linked to poorer patient prognosis, with particular mutations (e.g., R248) correlating with lower survival rates compared to mutations in other regions.

Article Abstract

The "guardian of the genome," TP53, is one of the most frequently mutated genes of all cancers. Despite the important biological roles of TP53, the clinical relevance of TP53 mutations, in gastric cancer (GC), remains largely unknown. Here, we systematically assessed clinical relevance, in terms of TP53 mutation positions, finding substantial variability. Thus, we hypothesized that the position of the TP53 mutation might affect clinical outcomes in GC. We systematically inspected missense mutations in TP53, from a TCGA (The Cancer Genome Atlas) GC dataset in UCSC Xena repository. Specifically, we examined five aspects of each mutational position: (1) the whole gene body; (2) known hot-spots; (3) the DNA-binding domain; (4) the secondary structure of the domain; and (5) individual mutation positions. We then analyzed the clinical outcomes for each aspect. These results showed that, in terms of secondary structure, patients with mutations in turn regions showed poor prognosis, compared to those with mutations in beta strand regions (log rank ${\text{p}}= {{0.043}}$p=0.043). Also, in terms of individual mutation positions, patients having mutations at R248 showed poorer survival than other patients having mutations at different TP53 positions (log rank ${\text{p}}= {{0.035}}$p=0.035).

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2018.2814049DOI Listing

Publication Analysis

Top Keywords

clinical relevance
12
mutation positions
12
patients mutations
12
tp53
8
relevance tp53
8
missense mutations
8
mutations gastric
8
gastric cancer
8
tp53 mutation
8
clinical outcomes
8

Similar Publications

The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.

View Article and Find Full Text PDF

The recent U.S. Food and Drug Administration guidance on complex innovative trial designs acknowledges the use of Bayesian strategies to incorporate historical information based on clinical expertise and data similarity.

View Article and Find Full Text PDF

Aims And Objectives: This study aimed to investigate the impact of sleep position preferences (SPP) on sleep quality, comfort and catheter care quality in patients after endoscopic nasobiliary drainage (ENBD).

Design: This was an observational prospective study.

Methods: This study included 167 participants with common bile duct stones (CBDS) who underwent ENBD from the gallstone ward of a hospital as a convenience sample.

View Article and Find Full Text PDF

Highly active antiretroviral therapy has led to a significant increase in the life expectancy of people living with HIV. The trade-off is that HIV-infected patients often suffer from comorbidities that require additional treatment, increasing the risk of Drug-Drug Interactions (DDIs), the clinical relevance of which has often not been determined during registration trials of the drugs involved. Therefore, it is important to identify potential clinically relevant DDIs in order to establish the most appropriate therapeutic approaches.

View Article and Find Full Text PDF

Regulatory authorities typically require bioequivalence to be demonstrated by comparing pharmacokinetic parameters like area under the plasma concentration-time curve (AUC) and maximum plasma concentration (C). Because in certain cases, AUC and C alone may not be adequate to identify formulation differences in early and/or late segments of the dosing interval, partial AUCs (pAUCs) have been proposed as additional metrics to evaluate bioequivalence. Even though cut-off points for pAUCs are usually decided based on clinical relevance, the identification of the correct cut-off range remains elusive in many other cases and tends to contribute to increased pAUC estimate variabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!