Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nonconvulsive status epilepticus is a condition where the patient is exposed to abnormally prolonged epileptic seizures without evident physical symptoms. Since these continuous seizures may cause permanent brain damage, it constitutes a medical emergency. This paper proposes a method to detect nonconvulsive seizures for a further nonconvulsive status epilepticus diagnosis. To differentiate between the normal and seizure electroencephalogram (EEG), a K-Nearest Neighbor, a Radial Basis Support Vector Machine, and a Linear Discriminant Analysis classifier are used. The classifier features are obtained from the Canonical Polyadic Decomposition (CPD) and Block Term Decomposition of the EEG data represented as third order tensor. To expand the EEG into a tensor, Wavelet or Hilbert-Huang transform are used. The algorithm is tested on a scalp EEG database of 139 seizures of different duration. The experimental results suggest that a Hilbert-Huang tensor representation and the CPD analysis provide the most suitable framework for nonconvulsive seizure detection. The Radial Basis Support Vector Machine classifier shows the best performance with sensitivity, specificity, and accuracy values over 98%. A rough comparison with other methods proposed in the literature shows the superior performance of the proposed method for nonconvulsive epileptic seizure detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2018.2829877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!