Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Covering alignment problems arise from recent developments in genomics; so called pan-genome graphs are replacing reference genomes, and advances in haplotyping enable full content of diploid genomes to be used as basis of sequence analysis. In this paper, we show that the computational complexity will change for natural extensions of alignments to pan-genome representations and to diploid genomes. More broadly, our approach can also be seen as a minimal extension of sequence alignment to labelled directed acyclic graphs (labeled DAGs). Namely, we show that finding a covering alignment of two labeled DAGs is NP-hard even on binary alphabets. A covering alignment asks for two paths R (red) and G (green) in DAG D and two paths R (red) and G (green) in DAG D that cover the nodes of the graphs and maximize the sum of the global alignment scores: as(sp(R),sp(R))+as(sp(G),sp(G)), where sp(P) is the concatenation of labels on the path P. Pair-wise alignment of haplotype sequences forming a diploid chromosome can be converted to a two-path coverable labelled DAG, and then the covering alignment models the similarity of two diploids over arbitrary recombinations. We also give a reduction to the other direction, to show that such a recombination-oblivious diploid alignment is NP-hard on alphabets of size 3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2018.2831691 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!