A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Editorial Special Issue on Deep Reinforcement Learning and Adaptive Dynamic Programming. | LitMetric

The sixteen papers in this special section focus on deep reinforcement learning and adaptive dynamic programming (deep RL/ADP). Deep RL is able to output control signal directly based on input images, which incorporates both the advantages of the perception of deep learning (DL) and the decision making of RL or adaptive dynamic programming (ADP). This mechanism makes the artificial intelligence much closer to human thinking modes. Deep RL/ADP has achieved remarkable success in terms of theory and applications since it was proposed. Successful applications cover video games, Go, robotics, smart driving, healthcare, and so on. However, it is still an open problem to perform the theoretical analysis on deep RL/ADP, e.g., the convergence, stability, and optimality analyses. The learning efficiency needs to be improved by proposing new algorithms or combined with other methods. More practical demonstrations are encouraged to be presented. Therefore, the aim of this special issue is to call for the most advanced research and state-of-the-art works in the field of deep RL/ADP.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2018.2818878DOI Listing

Publication Analysis

Top Keywords

deep rl/adp
16
adaptive dynamic
12
dynamic programming
12
special issue
8
deep
8
deep reinforcement
8
reinforcement learning
8
learning adaptive
8
editorial special
4
issue deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!