Recent visualization research efforts have incorporated experimental techniques and perceptual models from the vision science community. Perceptual laws such as Weber's law, for example, have been used to model the perception of correlation in scatterplots. While this thread of research has progressively refined the modeling of the perception of correlation in scatterplots, it remains unclear as to why such perception can be modeled using relatively simple functions, e.g., linear and log-linear. In this paper, we investigate a longstanding hypothesis that people use visual features in a chart as a proxy for statistical measures like correlation. For a given scatterplot, we extract 49 candidate visual features and evaluate which best align with existing models and participant judgments. The results support the hypothesis that people attend to a small number of visual features when discriminating correlation in scatterplots. We discuss how this result may account for prior conflicting findings, and how visual features provide a baseline for future model-based approaches in visualization evaluation and design.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2018.2810918DOI Listing

Publication Analysis

Top Keywords

visual features
16
correlation scatterplots
12
perception correlation
8
hypothesis people
8
correlation
5
features
5
correlation judgment
4
judgment visualization
4
visualization features
4
features comparative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!