In 2014, more than 10 million people in the US were affected by an ambulatory disability. Thus, gait rehabilitation is a crucial part of health care systems. The quantification of human locomotion enables clinicians to describe and analyze a patient's gait performance in detail and allows them to base clinical decisions on objective data. These assessments generate a vast amount of complex data which need to be interpreted in a short time period. We conducted a design study in cooperation with gait analysis experts to develop a novel Knowledge-Assisted Visual Analytics solution for clinical Gait analysis (KAVAGait). KAVAGait allows the clinician to store and inspect complex data derived during clinical gait analysis. The system incorporates innovative and interactive visual interface concepts, which were developed based on the needs of clinicians. Additionally, an explicit knowledge store (EKS) allows externalization and storage of implicit knowledge from clinicians. It makes this information available for others, supporting the process of data inspection and clinical decision making. We validated our system by conducting expert reviews, a user study, and a case study. Results suggest that KAVAGait is able to support a clinician during clinical practice by visualizing complex gait data and providing knowledge of other clinicians.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2017.2785271 | DOI Listing |
Cogn Process
January 2025
Human Movement Science Group, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany.
The objective was to examine differences in the gait-specific cognitive representation structures between individuals after total knee- (TKA) and after total hip-joint arthroplasty (THA). The cognitive representation structure was compared between three groups: 1. three months after TKA (n = 12), 2.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200233, China.
Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Rehabilitation, Maruki Memorial Medical and Social Welfare Center, Saitama, Japan.
Background: Evidence of the effectiveness of physiotherapy, including muscle strength training, coordination training, aerobic exercise, cycling regimen, balance training, gait training, and activity of daily living training, in patients with degenerative cerebellar ataxia (DCA) was insufficient for clinical decision making. We aimed to explore clinical outcomes and examine the parameters associated with physical impairment and activity in people with DCA based on preregistration (PROSPERO: CRD42024493883).
Methods: The PubMed, Cochrane Library, CHINAL, and PEDro databases were searched for relevant randomized controlled trials (RCTs).
Alzheimers Res Ther
January 2025
Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.
View Article and Find Full Text PDFJ Biomech
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu Sichuan Province China. Electronic address:
OpenCap, a smartphone-based markerless system, offers a cost-effective alternative to traditional marker-based systems for gait analysis. However, its kinematic measurement accuracy must be evaluated before widespread use in clinical practice. This study aimed to evaluate OpenCap for lower-limb joint angle measurements during walking in patients with knee osteoarthritis (OA) and to compare error metrics between patients and healthy controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!