Graphic design tools provide powerful controls for expert-level design creation, but the options can often be overwhelming for novices. This paper proposes Context-Aware Asset Search tools that take the current state of the user's design into account, thereby providing search and selections that are compatible with the current design and better fit the user's needs. In particular, we focus on image search and color selection, two tasks that are central to design. We learn a model for compatibility of images and colors within a design, using crowdsourced data. We then use the learned model to rank image search results or color suggestions during design. We found counterintuitive behavior using conventional training with pairwise comparisons for image search, where models with and without compatibility performed similarly. We describe a data collection procedure that alleviates this problem. We show that our method outperforms baseline approaches in quantitative evaluation, and we also evaluate a prototype interactive design tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2018.2842734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!