Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Inadequate visual and force feedback while navigating surgical tools elevate the risk of endovascular procedures. It also poses occupational hazard due to repeated exposure to X-rays. A teleoperated robotic system that augments surgeon's actions is a solution.
Method: We have designed and developed an endovascular robotic system that augments surgeon's actions using conventional surgical tools, as well as generates feedback in order to ensure safety during the procedure. The reaction force from vasculature is estimated from motor current that drives the surgical tool. Calibration required for force estimation is based on bilevel optimization. Input shaping is used in conjunction with a cascaded controller to avoid large responses due to faster inputs and to track tool position. The design, realization, and testing of our system are presented.
Results: The responses of the system in comparison with the dynamics model is similar vis-à-vis the same input commands. Any error in the position tracking is reduced by the cascaded controller. Phase-portrait analysis of the system showed that the system is stable. The reaction force estimation is validated against load cell measurements. The safety mechanism in the events of excessive reaction forces while interacting with vasculature is demonstrated.
Conclusion And Significance: Our system is a step toward intelligent robots that can assist surgeons during endovascular procedures by monitoring and alerting the surgeons regarding detrimental parameters. It arrests any unintended excursions of the surgical tools or surgeon's actions. This will also eliminate the need for surgeons to be in radiation environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2018.2800639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!