Objective: In this paper, we accurately detect the state-sequence first heart sound (S1)-systole-second heart sound (S2)-diastole, i.e., the positions of S1 and S2, in heart sound recordings. We propose an event detection approach without explicitly incorporating a priori information of the state duration. This renders it also applicable to recordings with cardiac arrhythmia and extendable to the detection of extra heart sounds (third and fourth heart sound), heart murmurs, as well as other acoustic events.

Methods: We use data from the 2016 PhysioNet/CinC Challenge, containing heart sound recordings and annotations of the heart sound states. From the recordings, we extract spectral and envelope features and investigate the performance of different deep recurrent neural network (DRNN) architectures to detect the state sequence. We use virtual adversarial training, dropout, and data augmentation for regularization.

Results: We compare our results with the state-of-the-art method and achieve an average score for the four events of the state sequence of ${\bf F}_{1}\approx 96$% on an independent test set.

Conclusion: Our approach shows state-of-the-art performance carefully evaluated on the 2016 PhysioNet/CinC Challenge dataset.

Significance: In this work, we introduce a new methodology for the segmentation of heart sounds, suggesting an event detection approach with DRNNs using spectral or envelope features.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2018.2843258DOI Listing

Publication Analysis

Top Keywords

heart sound
20
event detection
12
detection approach
12
heart
10
deep recurrent
8
recurrent neural
8
sound recordings
8
heart sounds
8
2016 physionet/cinc
8
physionet/cinc challenge
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!