A double-curved diverging lens over the flat row-column-addressed (RCA) 2-D array can extend its inherent rectilinear 3-D imaging field of view (FOV) to a curvilinear volume region, which is necessary for applications such as abdominal and cardiac imaging. Two concave lenses with radii of 12.7 and 25.4 mm were manufactured using RTV664 silicone. The diverging properties of the lenses were evaluated based on simulations and measurements on several phantoms. The measured FOV for both lenses in contact with tissue mimicking phantom was less than 15% different from the theoretical predictions, i.e., a curvilinear FOV of and for the 12.7- and 25.4-mm radii lenses. A synthetic aperture imaging sequence with single-element transmissions was designed for imaging down to 140 mm at a volume rate of 88 Hz. The performance was evaluated in terms of signal-to-noise ratio, FOV, and full-width at half-maximum (FWHM) of a focused beam. The penetration depths in a tissue mimicking phantom with 0.5-dB/(cm MHz) attenuation were 100 and 125 mm for the lenses with radii of 12.7 and 25.4 mm. The azimuth, elevation, and radial FWHM at 43-mm depth were (5.8, 5.8, 1) and (6, 6, 1) . The results of this study confirm that the proposed lens approach is an effective method for increasing the FOV, when imaging with RCA 2-D arrays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2018.2836384 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!