The reactive dynamics of N2 on W(100) has been investigated by means of quasi-classical trajectory calculations using an interpolated six-dimensional potential energy surface (PES) based on density functional theory energies obtained employing the vdW-DF2 functional. The dynamics are compared to those obtained using the PW91 functional and to experimental data. The results show that the new PES provides a significant improvement in the description of the reactivity in this system. We show that the long standing problem that constituted the large qualitative disagreement between the simulations performed with the PW91-PES and the experiments was due to the presence of energy barriers in the entrance channel that disappear when vdW forces are accounted for.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp03515f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!