The limited ability of current influenza virus vaccines to protect from antigenically drifted or shifted viruses creates a public health problem that has led to the need to develop effective, broadly protective vaccines. While current influenza virus vaccines mostly induce an immune response against the immunodominant and variable head domain of the hemagglutinin, the major surface glycoprotein of the virus, the hemagglutinin stalk domain has been identified to harbor neutralizing B-cell epitopes that are conserved among and even between influenza A virus subtypes. A complete understanding of the differences in evolution between the main target of current vaccines and this more conserved stalk region are missing. Here, we performed an evolutionary analysis of the stalk domains of the hemagglutinin of pre-pandemic seasonal H1N1, pandemic H1N1, seasonal H3N2, and influenza B viruses and show quantitatively for the first time that the stalk domain is evolving at a rate that is significantly slower than that of the head domain. Additionally, we found that the cross-reactive epitopes in the stalk domain targeted by broadly neutralizing monoclonal antibodies are evolving at an even slower rate compared to the full head and stalk regions of the protein. Finally, a fixed-effects likelihood selection analysis was performed for these virus groups in both the head and stalk domains. While several positive selection sites were found in the head domain, only a single site in the stalk domain of pre-pandemic seasonal H1 hemagglutinin was identified at amino acid position 468 (H1 numbering from methionine). This site is not located in or close to the epitopes of cross-reactive anti-stalk monoclonal antibodies. Furthermore, we found that changes in this site do not significantly impact virus binding or neutralization by human anti-stalk antibodies, suggesting that some positive selection in the stalk domain is independent of immune pressures. We conclude that, while the stalk domain does evolve over time, this evolution is slow and, historically, is not directed to aid in evading neutralizing antibody responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041311PMC
http://dx.doi.org/10.1038/s41598-018-28706-1DOI Listing

Publication Analysis

Top Keywords

stalk domain
24
head domain
12
stalk
10
domain
10
influenza virus
8
current influenza
8
stalk domains
8
pre-pandemic seasonal
8
monoclonal antibodies
8
head stalk
8

Similar Publications

Nde1 Promotes Lis1 Binding to Full-Length Autoinhibited Human Dynein-1.

bioRxiv

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.

Cytoplasmic dynein-1 (dynein) is the primary motor for the retrograde transport of intracellular cargoes along microtubules. The activation of the dynein transport machinery requires the opening of its autoinhibited Phi conformation by Lis1 and Nde1/Ndel1, but the underlying mechanism remains unclear. Using biochemical reconstitution and cryo-electron microscopy, we show that Nde1 significantly enhances Lis1 binding to autoinhibited dynein and facilitates the opening of Phi.

View Article and Find Full Text PDF

Growing evidence suggests that ribosomes selectively regulate translation of specific mRNA subsets. Here, quantitative proteomics and cryoelectron microscopy demonstrate that poxvirus infection does not alter ribosomal subunit protein (RP) composition but skews 40S rotation states and displaces the 40S head domain. Genetic knockout screens employing metabolic assays and a dual-reporter virus further identified two RPs that selectively regulate non-canonical translation of late poxvirus mRNAs, which contain unusual 5' poly(A) leaders: receptor of activated C kinase 1 (RACK1) and RPLP2.

View Article and Find Full Text PDF

Functional specialization of the subdomains of a bactofilin driving stalk morphogenesis in .

bioRxiv

December 2024

Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada.

Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed.

View Article and Find Full Text PDF
Article Synopsis
  • Pandemic influenza vaccine development emphasizes the importance of hemagglutinin (HA) and neuraminidase (NA) antibodies for effective immune responses.
  • Clinical trials show that NA inhibition antibody responses increase with higher doses and extended intervals between vaccine doses, indicating a potential strategy for enhancing immunity.
  • The study indicates that while neuraminidase responses can be improved for better pandemic preparedness, the antibody responses to the HA stalk were minimal and not long-lasting.
View Article and Find Full Text PDF

Immunization with extracellular vesicles conjugating inverted influenza HA elicits HA stalk-specific immunity and cross-protection in mice.

Mol Ther

December 2024

Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA. Electronic address:

Article Synopsis
  • Enhancing immunity in the respiratory tract is vital for fighting influenza through effective mucosal vaccines that can bypass barriers and stimulate immune responses.
  • The study used extracellular vesicles (EVs) as a vaccine platform by attaching influenza hemagglutinin (HA) in an upside-down orientation to expose the conserved parts of the virus.
  • Results showed that intranasal immunization with these EVs led to strong immune responses in mice, providing protection against various influenza strains and highlighting the potential for developing a universal mucosal vaccine.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!