Cartilage loss in osteoarthritis (OA) results from altered local production of growth factors and metalloproteases (MMPs). Furin, an enzyme involved in the protein maturation of MMPs, might regulate chondrocyte function. Here, we tested the effect of furin on chondrocyte catabolism and the development of OA. In primary chondrocytes, furin reduced the expression of MMP-13, which was reversed by treatment with the furin inhibitor α1-PDX. Furin also promoted the activation of Smad3 signaling, whereas activin receptor-like kinase 5 (ALK5) knockdown mitigated the effects of furin on MMP-13 expression. Mice underwent destabilization of the medial meniscus (DMM) to induce OA, then received furin (1 U/mice), α1-PDX (14 µg/mice) or vehicle. In mice with DMM, the OA score was lower with furin than vehicle treatment (6.42 ± 0.75 vs 9.16 ± 0.6, p < 0.01), and the number of MMP-13(+) chondrocytes was lower (4.96 ± 0.60% vs 20.96 ± 8.49%, p < 0.05). Moreover, furin prevented the increase in ALK1/ALK5 ratio in cartilage induced by OA. Conversely, α1-PDX had no effect on OA cartilage structure. These results support a protective role for furin in OA by maintaining ALK5 receptor levels and reducing MMP-13 expression. Therefore, furin might be a potential target mediating the development of OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041273PMC
http://dx.doi.org/10.1038/s41598-018-28713-2DOI Listing

Publication Analysis

Top Keywords

furin
9
proprotein convertase
4
convertase furin
4
furin inhibits
4
inhibits matrix
4
matrix metalloproteinase
4
metalloproteinase tgfβ-dependent
4
tgfβ-dependent manner
4
manner limits
4
limits osteoarthritis
4

Similar Publications

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

CCN1 is a matricellular protein highly expressed in esophageal squamous cell carcinoma (ESCC) but hardly detectable in esophageal adenocarcinoma (EAC). Expression of CCN1 in EAC cells leads to TRAIL-mediated apoptosis. Unlike TRAIL, which primarily triggers cell death, APRIL and BAFF promote cell growth via NFκB signaling.

View Article and Find Full Text PDF

Reimagining community engagement in TB elimination: a perspective from the field.

IJTLD Open

January 2025

Harvard Medical School, Department of Global Health and Social Medicine, Boston, MA, USA.

The role of community engagement (CE) in TB policy, care provision and research has been recognized as important, but most models of CE put communities at the periphery of these activities. In this Editorial, written by TB-impacted community members and care providers, we explore the meaning of CE and current barriers to its implementation. We present a model of CE that places community members at the center of TB policy, care provision and research.

View Article and Find Full Text PDF

Background: Brazil remains one of the 30 countries with the highest tuberculosis (TB) and TB-HIV coinfection burden. Post-TB lung disease (PTLD) is a set of sequelae that can occur in people who have been cured of TB.

Aim: To learn about the experiences of people living with PTLD (PLPTLD) and how healthcare workers (HCW) manage PTLD.

View Article and Find Full Text PDF

Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!