Effects of glyphosate on survival, developmental rate, larval weight, and midgut bacterial diversity of Apis mellifera were tested in the laboratory. Larvae were reared in vitro and fed diet containing glyphosate 0.8, 4, and 20 mg/L. The dependent variables were compared with negative control and positive control (dimethoate 45 mg/L). Brood survival decreased in 4 or 20 mg/L glyphosate treatments but not in 0.8 mg/L, and larval weight decreased in 0.8 or 4 mg/L glyphosate treatments. Exposure to three concentrations did not affect the developmental rate. Furthermore, the intestinal bacterial communities were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial phyla such as Proteobacteria (30.86%), Firmicutes (13.82%), and Actinobacteria (11.88%) were detected, and significant changes were found in the species diversity and richness in 20 mg/L glyphosate group. Our results suggest that high concentrations of glyphosate are deleterious to immature bees.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.8b02212 | DOI Listing |
Chemosphere
January 2025
Departamento de Química, Universidade Federal do Paraná, 81531-980, Curitiba, PR, Brazil.
Soil is regarded as a natural repository for strongly adsorbed pollutants since glyphosate (GLY) is preferentially adsorbed by the inorganic fraction of the soil, which may greatly limits its leaching. In this way, understanding how clay mineralogy influences the sorption and transport processes of glyphosate in soils with different mineralogical characteristics is highly relevant. In this work, two clay mineralogy contrasting soils were used to evaluate GLY retention: a Oxisol (OX) with high levels of iron oxides (amorphous and crystalline) and a Inceptisol (IN) with a predominance of kaolinite.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, People's Republic of China.
In order to achieve the goal of phosphate removal from glyphosate by-product salts, zirconium and zinc ions were successfully loaded onto D202 resin by co-precipitation modification method in this study, and their effectiveness in phosphate removal was evaluated under various conditions. The results of static adsorption experiments showed that the Zr/Zn@D202 resin effectively reduced the phosphate concentration in the glyphosate by-product salts from 10 mg/L to less than 0.1 mg/L, which met the national level emission standard ( < 0.
View Article and Find Full Text PDFChemosphere
December 2024
Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química. Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. Electronic address:
Metabolomics is a valuable tool to assess glyphosate exposure and its potential impact on human health. However, few studies have used metabolomics to evaluate human exposure to glyphosate or glyphosate-based herbicides (GBHs). In this study, an untargeted and targeted metabolomics approach was applied to human skin fibroblasts exposed to the GBH Roundup (GLYP-R).
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
Glyphosate (Gly), the world's most widely used herbicide in agriculture, can poison the red swamp crayfish, Procambarus clarkii, via spray drift and surface runoff into surface waters. However, there is a paucity of research on the mechanisms that affect crayfish tolerance to Gly at typical environmental concentrations. To address this research gap, we investigated the effects of Gly stress (0, 6, 12, 24, and 72 h) at different concentrations (0, 1.
View Article and Find Full Text PDFAquac Nutr
December 2024
National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999 Huchenghuan Road, Shanghai 201306, China.
The use of glyphosate (Gly) has caused unnecessary economic losses to the aquaculture industry, but research on the effect of Gly on is very limited. The aim of this study is to reduce the negative effects of Gly, reduce yield loss, and improve economic benefits through nutritional feed control technology. The experiment involved 80 crabs randomly divided into four groups: control group, Gly group (48.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!