Mechano-activated chemistry is a powerful tool for remodeling of synthetic polymeric materials, however, few reactions are currently available. Here we show that using piezochemical reduction of a Cu -based pre-catalyst, a step-growth polymerization occurs via the copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction to form a linear polytriazole. Furthermore, we show that a linear polymer can be crosslinked mechanochemically using the same chemistry to form a solid organogel. We envision that this chemistry can be used to harness mechanical energy for constructive purposes in polymeric materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201804451 | DOI Listing |
Pharmaceutics
November 2024
The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA.
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.
View Article and Find Full Text PDFBioact Mater
April 2025
School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
Complete spinal cord injury (SCI) causes permanent locomotor, sensory and neurological dysfunctions. Targeting complex immunopathological microenvironment at SCI sites comprising inflammatory cytokines infiltration, oxidative stress and massive neuronal apoptosis, the conductive oriented nanofiber felt with efficient ROS clearance, anti-inflammatory effect and accelerating neural regeneration is constructed by step-growth addition polymerization and electrostatic spinning technique for SCI repair. The formation of innovative Fe-PDA-PAT chelate in nanofiber felt enhances hydrophilic, antioxidant, antibacterial, hemostatic and binding factor capacities, thereby regulating immune microenvironment of SCI.
View Article and Find Full Text PDFMater Horiz
December 2024
Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
Additive manufacturing technologies and, in particular, vat photopolymerization promise complex structures that can be made in a fast and easy fashion for highly individualized products. While the technology has upheld this promise many times already, some polymers are still out of reach or at least problematic to print reliably. High-performance epoxide-based resins, which are regulated by chain transfer multifunctional alcohols, are a typical example of resins with late gel points, which require long irradiation times and high light intensities to print.
View Article and Find Full Text PDFSoft Matter
January 2025
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
The self-assembly behaviors of rod-coil asymmetric diblock molecular brushes (ADMBs) bearing responsive side chains in a selective solvent are investigated dissipative particle dynamics simulations. By systematically varying the polymerization degree, copolymer concentration, and side chain length, several morphological phase diagrams were constructed. ADMB assemblies exhibited a rich variety of morphologies, including cylindrical micelles, spherical micelles, nanowires, polyhedral micelles, ellipsoid micelles, and large compound micelles.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan. Electronic address:
This research utilizes carboxymethyl cellulose (CMC) as a renewable feedstock in polyurethane synthesis, offering improved thermal stability and potential for biomedical applications. In this study, a series of CMC-based polyurethanes was synthesized by using a step-growth polymerization reaction. The initial step involved the reaction of isophorone diisocyanate (IPDI) with hydroxy-terminated polybutadiene (HTPB) to prepare an isocyanate (-NCO) terminated prepolymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!