Lab-scale experiments on three soil matrices featured by increasing granulometry (sea sand, silica sand and gravel) were carried out in order to evaluate the adsorption capability and the removal efficiency of a new graphene-based material. Soil samples, firstly contaminated with different quantities of used lubricant oil up to final concentrations of 12.5, 25.0, 50.0 g kg, were treated with an opportune amount of thermally expanded graphite (TEG) (i.e. 1/10, 1/20, 1/40 as TEG/pollutant ratio). Results show that the removal efficiency of TEG is directly correlated to the contamination level of the soil. The best removal efficiency (87.04%) was obtained during the treatment of gravel samples at the maximum contamination level by using the highest dosage of TEG. A good removal efficiency (80.83%) was also achieved using lower TEG/pollutant ratio. Moreover, TEG at ratio 1/10 showed worse removal efficiencies in treating sea (81.17%) and silica sand (63.52%) than gravel. In this study, also the thermal regeneration was investigated in order to evaluate a possible reuse of TEG with subsequent technical and economic advantages. TEG-technique proves to be technologically and economically competitive with other currently used technologies, revealing the best choice for the remediation of hydrocarbon-contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-018-2395-4DOI Listing

Publication Analysis

Top Keywords

removal efficiency
16
thermally expanded
8
expanded graphite
8
silica sand
8
order evaluate
8
teg/pollutant ratio
8
contamination level
8
removal
6
teg
5
removal hydrocarbons
4

Similar Publications

In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.

View Article and Find Full Text PDF

We introduce a change of perspective on tensor network states that is defined by the computational graph of the contraction of an amplitude. The resulting class of states, which we refer to as tensor network functions, inherit the conceptual advantages of tensor network states while removing computational restrictions arising from the need to converge approximate contractions. We use tensor network functions to compute strict variational estimates of the energy on loopy graphs, analyze their expressive power for ground states, show that we can capture aspects of volume law time evolution, and provide a mapping of general feed-forward neural nets onto efficient tensor network functions.

View Article and Find Full Text PDF

Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.

View Article and Find Full Text PDF

Background And Aim: Proximal migration is one of the complications after pancreatic stenting. This study aims to determine the incidence, risk factors and endoscopic treatment of proximally migrated pancreatic stents.

Methods: A retrospective search of all the endoscopic retrograde cholangiopancreatography (ERCP) records was conducted from 1997 to 2022 in our tertiary center.

View Article and Find Full Text PDF

While CuS/TiO₂ has been previously synthesized and employed in a limited number of photodegradation studies, the current study investigated its effectiveness for TC degradation under UV-visible light irradiation. CuS is known to be a nontoxic, environmentally friendly material; hence, it has great potential as an alternative to CdS and CdSe, which are used conventionally as sensitizers. In this work, the CuS/TiO₂ photocatalysts achieved a maximum 95 % removal of TC at an initial concentration of 20 ppm, confirming the good utilization of active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!