Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated ionic transport behavior in the case of uncharged conical nanopores. To do so, we designed conical nanopores using atomic layer deposition of Al2O3/ZnO nanolaminates and then coated these with trimethylsilane. The experimental results are supported by molecular dynamics simulations. The ionic transport reveals an unexpected behavior: (i) a current rectification and (ii) a constant conductance at low salt concentration which are usually reported for charged conical nanopore. To explain these results, we have considered different assumptions: (i) a default of functionalization, (ii) the adsorption anion and (iii) the slippage. The first one was refuted by the study of the poly-l-lysine transport through the nanopore. To verify the second assumption, we investigate the effect of pH on the current rectification and the molecular dynamics simulations. Finally our study demonstrates that the unexpected ionic transport is provided to a predominant effect of slippage due to the water organization at the solid/liquid interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8fd00008e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!