Aspirin and its main metabolite salicylate are promising molecules in preventing cancer and metabolic diseases. cells have been used to study some of their effects: (i) salicylate induces the reversible inhibition of both glucose transport and the biosyntheses of glucose-derived sugar phosphates, (ii) Aspirin/salicylate causes apoptosis associated with superoxide radical accumulation or early cell necrosis in MnSOD-deficient cells growing in ethanol or in glucose, respectively. So, treatment with (acetyl)-salicylic acid can alter the yeast metabolism and is associated with cell death. We describe here the dramatic effects of salicylate on cellular control of the exit from a quiescence state. The growth recovery of long-term stationary phase cells was strongly inhibited in the presence of salicylate, to a degree proportional to the drug concentration. At high salicylate concentration, growth reactivation was completely repressed and associated with a dramatic loss of cell viability. Strikingly, both of these phenotypes were fully suppressed by increasing the cAMP signal without any variation of the exponential growth rate. Upon nutrient exhaustion, salicylate induced a premature lethal cell cycle arrest in the budded-G2/M phase that cannot be suppressed by PKA activation. We discuss how the dramatic antagonism between cAMP and salicylate could be conserved and impinge common targets in yeast and humans. Targeting quiescence of cancer cells with stem-like properties and their growth recovery from dormancy are major challenges in cancer therapy. If mechanisms underlying cAMP-salicylate antagonism will be defined in our model, this might have significant therapeutic implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035838PMC
http://dx.doi.org/10.15698/mic2018.07.640DOI Listing

Publication Analysis

Top Keywords

growth recovery
12
camp signal
8
effects salicylate
8
salicylate
7
cell
5
growth
5
antagonism salicylate
4
salicylate camp
4
signal controls
4
controls yeast
4

Similar Publications

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

High spatial or temporal variability in community composition makes it challenging for natural resource managers to predict ecosystem trajectories at scales relevant to management. This is commonly the case in nearshore marine environments, where the frequency and intensity of disturbance events vary at the sub-kilometer to meter scale, creating a patchwork of successional stages within a single ecosystem. The successional stage of a community impacts its stability, recovery potential, and trajectory over time in predictable ways.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has gained significant attention as a potential therapeutic tool in stroke rehabilitation, promoting neuroplasticity and enhancing motor and cognitive recovery. Despite growing research, the field's evolution and key trends remain underexplored. This study aims to perform a bibliographic analysis of publications related to tDCS and stroke rehabilitation to assess the growth of the field.

View Article and Find Full Text PDF

Under climate change, ecosystems are experiencing novel drought regimes, often in combination with stressors that reduce resilience and amplify drought's impacts. Consequently, drought appears increasingly likely to push systems beyond important physiological and ecological thresholds, resulting in substantial changes in ecosystem characteristics persisting long after drought ends (i.e.

View Article and Find Full Text PDF

Early life stage bottleneck determines rates of coral recovery following severe disturbance.

Ecology

January 2025

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA.

Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!