The effect of administration of fenbendazole on the microbial hindgut population of the horse.

J Equine Sci

Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Penglais Campus, Aberystwyth University, SY23 3DA, Wales, U.K.

Published: July 2018

Anthelmintics are used as anti-worming agents. Although known to affect their target organisms, nothing has been published regarding their effect on other digestive tract organisms or on metabolites produced by them. The current work investigated effects of fenbendazole, a benzimidazole anthelmintic, on bacteria and ciliates in the equine digestive tract and on and their major metabolites. Animals receiving anthelmintic treatment had high faecal egg counts relative to controls. Analysis was performed over two weeks, with temporal differences detected in bacterial populations but with no other significant differences detected. This suggests fenbendazole has no detectable effect on organisms other than its targets. Moreover it does not appear to make a contribution to changing the resulting metabolome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033616PMC
http://dx.doi.org/10.1294/jes.29.47DOI Listing

Publication Analysis

Top Keywords

digestive tract
8
differences detected
8
administration fenbendazole
4
fenbendazole microbial
4
microbial hindgut
4
hindgut population
4
population horse
4
horse anthelmintics
4
anthelmintics anti-worming
4
anti-worming agents
4

Similar Publications

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice.

View Article and Find Full Text PDF

Functional Verification of Differentially Expressed Genes Following DENV2 Infection in .

Viruses

January 2025

State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.

The dengue virus (DENV) is primarily transmitted by . Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of infection with DENV2 were selected.

View Article and Find Full Text PDF

: is the leading cause of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoma. Due to the emerging problems with antibiotic treatment against in clinical practice, vaccination has gained more interest. Oral immunization is considered a promising approach for preventing initial colonization of this bacterium in the gastrointestinal tract, establishing a first line of defense at gastric mucosal surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!