Hypokalemic periodic paralysis is a skeletal muscle disease characterized by episodic weakness associated with low serum potassium. We compared clinical and biophysical effects of R222W, the first hNa1.4 domain I mutation linked to this disease. R222W patients exhibited a higher density of fibers with depolarized resting membrane potentials and produced action potentials that were attenuated compared to controls. Functional characterization of the R222W mutation in heterologous expression included the inactivation deficient IFM/QQQ background to isolate activation. R222W decreased sodium current and slowed activation without affecting probability. Consistent with the phenotype of muscle weakness, R222W shifted fast inactivation to hyperpolarized potentials, promoted more rapid entry, and slowed recovery. R222W increased the extent of slow inactivation and slowed its recovery. A two-compartment skeletal muscle fiber model revealed that defects in fast inactivation sufficiently explain action potential attenuation in patients. Molecular dynamics simulations showed that R222W disrupted electrostatic interactions within the gating pore, supporting the observation that R222W promotes omega current at hyperpolarized potentials. Sodium channel inactivation defects produced by R222W are the primary driver of skeletal muscle fiber action potential attenuation, while hyperpolarization-induced omega current produced by that mutation promotes muscle fiber depolarization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039468 | PMC |
http://dx.doi.org/10.1038/s41598-018-28594-5 | DOI Listing |
Sci Rep
December 2024
Physical Therapy Department, Rehabilitation Faculty, Tehran University of Medical Sciences, Tehran, Iran.
The study aimed to determine if virtual reality (VR) games could enhance neuromuscular control and improve anticipatory and compensatory strategies in ball-kicking for soccer players. It was a single-blind randomized clinical trial involving 32 male soccer players with chronic ankle instability. Participants were divided into two groups: VR games and balance training.
View Article and Find Full Text PDFSci Rep
December 2024
Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, Jiangsu, China.
Impaired nutritional status is closely related to the development of sarcopenia and poor quality of life (QoL) in cancer patients. This study aimed to investigate the association of Geriatric Nutritional Risk Index (GNRI) with sarcopenia and QoL in patients with gastric cancer (GC). Sarcopenia was diagnosed based on the Asian Working Group for Sarcopenia 2019 criteria.
View Article and Find Full Text PDFSci Rep
December 2024
Health and Sports Medicine Department, Faculty of Sports Sciences and Health, University of Tehran, North Karegar St, P.O.B: 1439813117, Tehran, Iran.
Although the connection between muscular strength and flatfoot condition is well-established, the impact of corrective exercises on these muscles remains inadequately explored. This study aimed to assess the impact of intrinsic- versus extrinsic-first corrective exercise programs on muscle morphometry and navicular drop in boys with flexible flatfoot. Twenty-five boys aged 10-12 with flexible flatfoot participated, undergoing a 12-week corrective exercise program, with a shift in focus at six weeks.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Obstetrics and Gynecology rehabilitation, West China Second Hospital, Sichuan University, Huaxi Technology Building, 16 Linjiang Middle Road, Wuhou District, Chengdu, 610000, Sichuan, China.
Rectus abdominis diastasis (RAD) is a key factor in the rehabilitation of postpartum women. This study aimed to evaluate the clinical efficacy of Kinesio Taping (KT) in RAD treatment and abdominal changes. The medical records of women with RAD who received KT treatment at the hospital were reviewed.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.
Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!