Minimalism and functionality: Structural lessons from the heterodimeric N4 bacteriophage RNA polymerase II.

J Biol Chem

From the Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802

Published: August 2018

AI Article Synopsis

Article Abstract

Genomes of phages, mitochondria, and chloroplasts are transcribed by a diverse group of transcriptional machineries with structurally related single-subunit RNA polymerases (RNAPs). Our understanding of transcription mechanisms of these enzymes is predominantly based on biochemical and structural studies of three most-studied members, transcription factor-independent phage T7 RNAP, transcription factor-dependent phage N4 virion-encapsidated RNAP, and transcription factor-dependent mitochondrial RNAPs (mtRNAP). Although these RNAPs employ completely different mechanisms for promoter recognition and transcription termination, these enzymes are relatively large and formed by single polypeptides. Historically being a model enzyme for studying the mechanisms of transcription by T7-like RNAPs, however, T7 RNAP represents only a small group of RNAPs in this family. The vast majority of T7-like RNAPs are transcription factor-dependent, and several of them are heterodimeric enzymes. Here, we report X-ray crystal structures of transcription complexes of the smallest and heterodimeric form of T7-like RNAP, bacteriophage N4 RNAPII, providing insights into the structural organization of a minimum RNAP in this family. We analyze structural and functional aspects of heterodimeric architecture of N4 RNAPII concerning the mechanisms of transcription initiation and transition to processive RNA elongation. Interestingly, N4 RNAPII maintains the same conformation in promoter-bound and elongation transcription complexes, revealing a novel transcription mechanism for single-subunit RNAPs. This work establishes a structural basis for studying mechanistic aspects of transcription by factor-dependent minimum RNAP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120196PMC
http://dx.doi.org/10.1074/jbc.RA118.003447DOI Listing

Publication Analysis

Top Keywords

transcription factor-dependent
16
transcription
12
rnap transcription
8
mechanisms transcription
8
t7-like rnaps
8
transcription complexes
8
minimum rnap
8
rnaps
7
rnap
6
structural
5

Similar Publications

Hypoxia inducible factor-dependent upregulation of Agrp in glomus type I cells of the carotid body.

Mol Metab

January 2025

Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).

View Article and Find Full Text PDF

Cholesterol restriction primes antiviral innate immunity via SREBP1-driven noncanonical type I IFNs.

EMBO Rep

December 2024

Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.

Cholesterol metabolism is associated with innate immune responses; however, the underlying mechanism remains unclear. Here, we perform chemical screening to isolate small molecules influencing RIG-I activity, a cytoplasmic viral RNA sensor. We find that statins, which inhibit cholesterol synthesis, dramatically enhance RIG-I-dependent antiviral responses in specific cell types.

View Article and Find Full Text PDF

WD40 protein OsTTG1 promotes anthocyanin accumulation and CBF transcription factor-dependent pathways for rice cold tolerance.

Plant Physiol

December 2024

Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.

Temperature is a critical abiotic factor affecting rice (Oryza sativa L.) yields, and cold stress at the seedling stage can inhibit plant growth or even be fatal. Antioxidants such as anthocyanins accumulate in a variety of plants during cold stress, but the underlying mechanisms are not well understood.

View Article and Find Full Text PDF

Transcription factors (TFs) involved in sexual reproduction in filamentous fungi have been characterized. However, we have little understanding of how these TFs synergize within regulatory networks resulting in sexual development. We investigated 13 TFs in , whose knockouts exhibited abortive or arrested phenotypes during sexual development to elucidate the transcriptional regulatory cascade underlying the development of the sexual fruiting bodies.

View Article and Find Full Text PDF

Transcriptional regulation, orchestrated by the interplay between transcription factors (TFs) and enhancers, governs gene expression dynamics crucial for cellular processes. While gross qualitative fluctuations in transcription factor-dependent gene expression patterning have a long history of characterization, the roles of these factors in the nuclei retaining expression in the presence or absence of these factors are now observable using modern techniques. Our study investigates the impact of Suppressor of Hairless (Su(H)), a broadly expressed transcription factor, on enhancer-driven transcriptional modulation using early embryos as a model system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!