Genomes of phages, mitochondria, and chloroplasts are transcribed by a diverse group of transcriptional machineries with structurally related single-subunit RNA polymerases (RNAPs). Our understanding of transcription mechanisms of these enzymes is predominantly based on biochemical and structural studies of three most-studied members, transcription factor-independent phage T7 RNAP, transcription factor-dependent phage N4 virion-encapsidated RNAP, and transcription factor-dependent mitochondrial RNAPs (mtRNAP). Although these RNAPs employ completely different mechanisms for promoter recognition and transcription termination, these enzymes are relatively large and formed by single polypeptides. Historically being a model enzyme for studying the mechanisms of transcription by T7-like RNAPs, however, T7 RNAP represents only a small group of RNAPs in this family. The vast majority of T7-like RNAPs are transcription factor-dependent, and several of them are heterodimeric enzymes. Here, we report X-ray crystal structures of transcription complexes of the smallest and heterodimeric form of T7-like RNAP, bacteriophage N4 RNAPII, providing insights into the structural organization of a minimum RNAP in this family. We analyze structural and functional aspects of heterodimeric architecture of N4 RNAPII concerning the mechanisms of transcription initiation and transition to processive RNA elongation. Interestingly, N4 RNAPII maintains the same conformation in promoter-bound and elongation transcription complexes, revealing a novel transcription mechanism for single-subunit RNAPs. This work establishes a structural basis for studying mechanistic aspects of transcription by factor-dependent minimum RNAP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120196 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.003447 | DOI Listing |
Mol Metab
January 2025
Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).
View Article and Find Full Text PDFEMBO Rep
December 2024
Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
Cholesterol metabolism is associated with innate immune responses; however, the underlying mechanism remains unclear. Here, we perform chemical screening to isolate small molecules influencing RIG-I activity, a cytoplasmic viral RNA sensor. We find that statins, which inhibit cholesterol synthesis, dramatically enhance RIG-I-dependent antiviral responses in specific cell types.
View Article and Find Full Text PDFPlant Physiol
December 2024
Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
Temperature is a critical abiotic factor affecting rice (Oryza sativa L.) yields, and cold stress at the seedling stage can inhibit plant growth or even be fatal. Antioxidants such as anthocyanins accumulate in a variety of plants during cold stress, but the underlying mechanisms are not well understood.
View Article and Find Full Text PDFmBio
January 2025
Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
Transcription factors (TFs) involved in sexual reproduction in filamentous fungi have been characterized. However, we have little understanding of how these TFs synergize within regulatory networks resulting in sexual development. We investigated 13 TFs in , whose knockouts exhibited abortive or arrested phenotypes during sexual development to elucidate the transcriptional regulatory cascade underlying the development of the sexual fruiting bodies.
View Article and Find Full Text PDFCells
October 2024
Department of Biology, University of Texas at Arlington, Arlington, TX 76010, USA.
Transcriptional regulation, orchestrated by the interplay between transcription factors (TFs) and enhancers, governs gene expression dynamics crucial for cellular processes. While gross qualitative fluctuations in transcription factor-dependent gene expression patterning have a long history of characterization, the roles of these factors in the nuclei retaining expression in the presence or absence of these factors are now observable using modern techniques. Our study investigates the impact of Suppressor of Hairless (Su(H)), a broadly expressed transcription factor, on enhancer-driven transcriptional modulation using early embryos as a model system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!