Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Osteoarthritis (OA), a degenerative joint disease characterized by progressive cartilage degeneration, is one of the leading causes of disability worldwide owing to the limited regenerative capacity of adult articular cartilage. Currently, there are no disease-modifying pharmacological or surgical therapies for OA. Fetal mammals, in contrast to adults, are capable of regenerating injured cartilage in the first two trimesters of gestation. A deeper understanding of the properties intrinsic to the response of fetal tissue to injury would allow us to modulate the way in which adult tissue responds to injury. In this study, we employed secretome proteomics to compare fetal and adult protein regulation in response to cartilage injury using an ovine cartilage defect model. The most relevant events comprised proteins associated with the immune response and inflammation, proteins specific for cartilage tissue and cartilage development, and proteins involved in cell growth and proliferation. Alarmins S100A8, S100A9 and S100A12 and coiled-coil domain containing 88A (CCDC88A), which are associated with inflammatory processes, were found to be significantly upregulated following injury in adult, but not in fetal animals. By contrast, cartilage-specific proteins like proteoglycan 4 were upregulated in response to injury only in fetal sheep postinjury. Our results demonstrate the power and relevance of the ovine fetal cartilage regeneration model presented here for the first time. The identification of previously unrecognized modulatory proteins that plausibly affect the healing process holds great promise for potential therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078409 | PMC |
http://dx.doi.org/10.1242/dmm.033092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!