The co-occurrence of toxic vanadium (V) and chromium (VI) in groundwater receives incremental attention while knowledge on their interactions in biogeochemical processes is limited, with lack of efficient removal means. This study is the first to realize synchronous bio-reductions of V(V) and Cr(VI) with high efficiency by mixed anaerobic culture. After 72-h operation, 97.0 ± 1.0% of V(V) and 99.1 ± 0.7% of Cr(VI) were removed, respectively, with initial concentration of 1 mM for both V(V) and Cr(VI). Cr(VI) bio-reduction took priority while V(V) detoxification was inhibited. V(IV) and Cr(III) were the identified reduction products, both of which could precipitate naturally. Initial Cr(VI) and acetate concentrations as well as pH affected this process significantly. High-throughput 16S rRNA gene sequencing analysis indicated the accumulation of Anaerolineaceae, Spirochaeta and Spirochaetaceae, which could contribute to V(V) and Cr(VI) bio-reductions. The new knowledge obtained in this study will facilitate understanding the biogeochemical fate of co-existing V(V) and Cr(VI) in groundwater and development of bioremediation strategy for their induced combined pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.06.080 | DOI Listing |
Environ Pollut
November 2018
School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
The co-occurrence of toxic vanadium (V) and chromium (VI) in groundwater receives incremental attention while knowledge on their interactions in biogeochemical processes is limited, with lack of efficient removal means. This study is the first to realize synchronous bio-reductions of V(V) and Cr(VI) with high efficiency by mixed anaerobic culture. After 72-h operation, 97.
View Article and Find Full Text PDFWater Res
September 2018
School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
Groundwater co-contaminated by vanadium (V) (V(V)) and nitrate requires efficient remediation to prevent adverse environmental impacts. However, little is known about simultaneous bio-reductions of V(V) and nitrate supported by gaseous electron donors in aquifers. This study is among the first to examine microbial V(V) reduction and denitrification with hydrogen as the sole electron donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!