Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron is a vital element required for normal cellular physiology in animal systems, but excess iron accumulation in the biological system accelerates oxidative stress, cellular toxicity, tissue injury and organ fibrosis, which ultimately leads to the generation of chronic liver diseases including cancer. A natural antioxidant, ellagic acid (EA) has been previously reported for its pharmacological properties; however, there is no significant evidence available that could illustrate its protective potential against iron-overload induced hepatotoxicity. In the present work, EA was evaluated for its in vitro free radical scavenging and iron chelation potentials. Further, EA was tested in vivo for its protective activity against iron overload-induced hepatotoxicity in Swiss albino mice by evaluating liver iron content, reactive oxygen species (ROS), liver antioxidant enzymes, serum marker levels, liver damage and fibrosis, histopathological study and finally western blotting analysis. EA treatment significantly decreased liver iron and serum ferritin levels. Elevated ROS levels, decreased antioxidant parameters and elevated serum markers were normalized upon treatment with EA. Cellular morphology, iron -overload and liver fibrosis were found to be effectively ameliorated. Finally, the protective effect of EA against iron overload-induced apoptosis was confirmed by western blotting when its treatment upregulated the expressions of caspase-3 and poly(ADP-ribose) polymerase (PARP) proteins. EA revealed hepatoprotective activity against iron overload-induced toxicity through scavenging free radicals, inhibiting excess ROS production, normalizing liver damage parameters and upregulating caspase-3, PARP expression. Collectively, our findings support the possible use of the natural antioxidant EA as a promising candidate against iron-overloaded diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2018.06.133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!