The plasticity of indigenous microbial community in a full-scale heavy oil-produced water treatment plant.

J Hazard Mater

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China. Electronic address:

Published: September 2018

Indigenous microbial communities are main and promising performers for bioremediation due to their excellent adaptability, degradation capability, and inherent plasticity. Treating heavy oil-produced water (HOPW) is a challenge owing to the high recalcitrance and heterogeneity of chemicals it contains. A full-scale HOPW treatment plant was built at a capacity of 10,000 m/d with the indigenous microbial community. After the treatment, the outlet water reached the design standard. The microbial community structures in all treatment stages were analyzed by using Illumina MiSeq 16S rRNA gene sequencing. The composition of microbial community changed greatly with the changes in environmental conditions, especially with the only artificially regulated parameter of dissolved oxygen. In the anaerobic stage, the community converted the recalcitrant chemical oxygen demand to biological oxygen demand (BOD), and played a major role in enhancing the biodegradability of HOPW. During the aerobic stage, the community mainly mineralized BOD. These results suggest that the structures of indigenous microbial community differed in different treatment stages to accomplish the corresponding functions. Based on these findings, it is proposed that exploiting the plasticity of microbial communities for bioremediation is feasible, especially treating wastewater with varied components.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2018.06.049DOI Listing

Publication Analysis

Top Keywords

microbial community
20
indigenous microbial
16
heavy oil-produced
8
oil-produced water
8
treatment plant
8
microbial communities
8
treatment stages
8
stage community
8
oxygen demand
8
microbial
7

Similar Publications

Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice.

Arch Toxicol

December 2024

Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.

Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF.

View Article and Find Full Text PDF

Tourette syndrome and other tic disorders are prevalent neurodevelopmental disorders typically treated with behavioral techniques or pharmacological interventions, primarily antipsychotics. However, many patients do not achieve sufficient response to conventional treatments, underscoring the need for further research in this area. To provide a comprehensive overview of ongoing research activities, we systematically searched the clinical registries of the World Health Organization (WHO) and of the United States National Institutes of Health (NIH) for currently planned or ongoing registered clinical studies.

View Article and Find Full Text PDF

Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation.

View Article and Find Full Text PDF

Escherichia coli producing OXA-48-like carbapenemases (OXA-EC) is considered a high-risk pathogen spread primarily in the community in low- and middle-income countries and nosocomially in high-income countries. We investigated the emergence and spread of OXA-EC in Israel, a high-income country with strong carbapenemase-directed infection control in healthcare institutions, by conducting a population-based study using data and isolates from the national surveillance system. A total of 3,510 incident cases of OXA-EC occurred during 2007-2023.

View Article and Find Full Text PDF

Glycosylation of oyster peptides by COS ameliorates zinc deficiency-induced syndromes: intestinal inflammation and imbalance of the gut microbiota .

Food Funct

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Zinc is essential for maintaining the integrity and repair of small intestinal epithelial cells while zinc deficiency could induce the inflammatory infiltration and imbalance of intestinal flora in the intestine. In this study, glycosylation between oyster protein hydrolysate (OPH) and chitosan oligosaccharide (COS) was conducted and used as the carrier of zinc ions (OCZn). The results of zeta potential and particle size distribution showed that the OPH-COS successfully bound to zinc ions to form OCZn with a surface zinc content of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!