A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of the cerebellum for feedback processing and behavioral switching in a reversal-learning task. | LitMetric

Previous studies have reported cerebellar activations during error and reward processing. The present study investigated if the cerebellum differentially processes feedback depending on changes in response strategy during reversal learning, as is conceivable given its internal models for movement and thought. Negative relative to positive feedback in an fMRI-based reversal learning task was hypothesized to be associated with increased cerebellar activations. Moreover, increased activations were expected for negative feedback followed by a change in response strategy compared to negative feedback not followed by such a change, and for first positive feedback after compared to final negative feedback before a change, due to updating of internal models. As predicted, activation in lobules VI and VIIa/Crus I was increased for negative relative to positive feedback, and for final negative feedback before a change in response strategy relative to negative feedback not associated with a change. Moreover, activation was increased for first positive feedback after relative to final negative feedback before a change. These findings are consistent with updating of cerebellar internal models to accommodate new behavioral strategies. Recruitment of posterior regions in reversal learning is in line with the cerebellar functional topography, with posterior regions involved in complex motor and cognitive functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bandc.2018.07.001DOI Listing

Publication Analysis

Top Keywords

negative feedback
24
feedback change
20
positive feedback
16
feedback
12
response strategy
12
reversal learning
12
internal models
12
final negative
12
cerebellar activations
8
negative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!