Breast milk plays an important role in immune development in early life and protects against diseases later in life. A wide range of the beneficial effects of breast milk are attributed to human milk oligosaccharides (HMOs) as well as components such as vitamin D3 (VitD3) or TGFβ. One mechanism by which HMOs might contribute to immune homeostasis and protection against disease is the induction of a local tolerogenic milieu. In this study we investigated the effect of the HMOs 6'-sialyllactose (6'SL) and 2'-fucosyllactose (2'FL) as well as prebiotic galactooligosaccharides (GOS) on DC differentiation and maturation. Isolated CD14+ monocytes were cultured for six days in the presence of GM-CSF and IL-4 with or without 6'SL, 2'FL, GOS, VitD3 or TGFβ. Additionally, immature VitD3DC, TGFβDC and moDC were used as different DC types to investigate the effect of 6'SL, 2'FL and GOS on DC maturation. Surface marker expression and cytokine production was measured by flow cytometry and cytometric bead array, respectively. Unlike TGFβ and vitD3, the oligosaccharides 6'SL, 2'FL and GOS did not influence DC differentiation. Next, we studied the effect of 6'SL, 2'FL and GOS on maturation of moDC, VitD3DC and TGFβDC that showed different profiles of HMO-binding receptors. 6'SL, 2'FL and GOS did not modulate LPS-induced maturation, even though their putative receptors were present on the different DCs types. Thus, whereas VitD3 and TGFβ halt DC differentiation, which results in phenotypically distinct tolerogenic DCs, 6'SL, 2'FL and GOS do not alter DC differentiation or maturation of in vitro differentiated DC types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039038 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200356 | PLOS |
Biomolecules
November 2024
Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
Infants rely on their developing immune system and the protective components of breast milk to defend against bacterial and viral pathogens, as well as immune disorders such as food allergies, prior to the introduction of solid foods. When breastfeeding is not feasible, fortified infant formula will most frequently be offered, usually based on a cow's milk-based substitute. The current study aimed to explore the immunomodulatory effects of combinations of commercially available human milk oligosaccharides (HMOs).
View Article and Find Full Text PDFFront Nutr
December 2024
Department of Clinical Laboratory, Dalian Women and Children's Medical Group, Dalian, China.
Background: The interaction between the human breast milk microbiota and human milk oligosaccharides (HMOs) plays a crucial role in the healthy growth and development of infants. We aimed to clarify the link between the breast milk microbiota and HMOs at two stages of lactation.
Methods: The microbiota and HMOs of 20 colostrum samples (C group, 1-5 days postpartum) and 20 mature milk samples (S group, 42 days postpartum) collected from postpartum mothers were analyzed using 16S rRNA gene high-throughput sequencing and high-performance liquid chromatography-tandem mass spectrometry.
Arch Argent Pediatr
December 2024
Instituto de Lactología Industrial (INLAIN, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina.
Human milk oligosaccharides (HMO) are the specific and selective growth substrate for bifidobacteria, preventing pathogen adhesion, modulating the immune system, and impacting neurodevelopment. Human milk is the best food for the neonate; infant formulas enriched with HMOs are indicated when human milk is not possible or sufficient. HMOs developed and added to available infant formulas are 2'-FL (2'-fucosyl lactose), 3-FL (3-fucosyl lactose), 3'-SL (3'-sialyl lactose), 6'-SL (6'-sialyl lactose), LNT (lacto-N-tetraose), and 3'-GL (3'-galactosyl lactose), the latter being produced in situ by microbial fermentation.
View Article and Find Full Text PDFJ Food Sci
December 2024
Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji, Japan.
Human milk oligosaccharides (HMOs) have been positively associated with child neurodevelopment in some cohort studies. However, there is a lack of consistency in the association between HMOs and benefits to infants' brains. Moreover, the quantification methods for HMOs have not yet been standardized.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
Introduction: Human milk contains human milk oligosaccharides (HMOs) and microRNAs (miRNAs), which are key bioactive components. HMOs are indigestible carbohydrates that impact infant growth and development. miRNAs are small, non-coding RNAs that regulate post-transcriptional gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!