Although the accumulation of amyloidogenic proteins in neuroinflammatory conditions is generally considered pathologic, in a murine model of multiple sclerosis, amyloid-forming fibrils, comprised of hexapeptides, are anti-inflammatory. Whether these molecules modulate systemic inflammatory conditions remains unknown. We hypothesized that an amylin hexapeptide that forms fibrils can attenuate the systemic inflammatory response in a murine model of sepsis. To test this hypothesis, mice were pre-treated with either vehicle or amylin hexapeptide (20 μg) at 12 hours and 6 hours prior to intraperitoneal (i.p.) lipopolysaccharide (LPS, 20 mg/kg) administration. Illness severity and survival were monitored every 6 hours for 3 days. Levels of pro- (IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-10) cytokines were measured via ELISA at 1, 3, 6, 12, and 24 hours after LPS (i.p.). As a metric of lung injury, pulmonary artery endothelial cell (PAEC) barrier function was tested 24 hours after LPS administration by comparing lung wet-to-dry ratios, Evan's blue dye (EBD) extravasation, lung histology and caspase-3 activity. Compared to controls, pretreatment with amylin hexapeptide significantly reduced mortality (p<0.05 at 72 h), illness severity (p<0.05), and pro-inflammatory cytokine levels, while IL-10 levels were elevated (p<0.05). Amylin pretreatment attenuated LPS-induced lung injury, as demonstrated by decreased lung water and caspase-3 activity (p<0.05, versus PBS). Hence, in a murine model of systemic inflammation, pretreatment with amylin hexapeptide reduced mortality, disease severity, and preserved lung barrier function. Amylin hexapeptide may represent a novel therapeutic tool to mitigate sepsis severity and lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039005PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199206PLOS

Publication Analysis

Top Keywords

amylin hexapeptide
12
lung injury
8
murine model
8
systemic inflammatory
8
hours lps
8
hours
5
amyloidogenic hexapeptide
4
hexapeptide derived
4
amylin
4
derived amylin
4

Similar Publications

Amyloid formation is a hallmark of various neurodegenerative disorders. In this contribution, energy landscapes are explored for various hexapeptides that are known to form amyloids. Heat capacity (CV) analysis at low temperature for these hexapeptides reveals that the low energy structures contributing to the first heat capacity feature above a threshold temperature exhibit a variety of backbone conformations for amyloid-forming monomers.

View Article and Find Full Text PDF

Class II two-peptide lanthipeptide proteases: exploring LicTP for biotechnological applications.

Appl Microbiol Biotechnol

March 2023

Department of Biology and Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Aveiro, Portugal.

The enzymatic machinery involved in the biosynthesis of lantibiotic is an untapped source of proteases with different specificities. Lanthipeptide biosynthesis requires proteolysis of specific target sequences by known proteases, which are encoded by contiguous genes. Herein, the activity of lichenicidin A2 (LicA2) trimming proteases (LicP and LicT) was investigated in vivo.

View Article and Find Full Text PDF

The hexapeptide hIAPP (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild-type hIAPP's toxicity to β-cell death. In amyloid research, the role of hydrophobic and aromatic-aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic-aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues.

View Article and Find Full Text PDF

Amyloids in Site-Specific Autoimmune Reactions and Inflammatory Responses.

Front Immunol

December 2020

Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.

Amyloid deposition is a histological hallmark of common human disorders including Alzheimer's disease (AD) and type 2 diabetes. Although some reports highlight that amyloid fibrils might activate the innate immunity system via pattern recognition receptors, here, we provide multiple lines of evidence for the protection by site-specific amyloid protein analogs and fibrils against autoimmune attacks: (1) strategies targeting clearance of the AD-related brain amyloid plaque induce high risk of deadly autoimmune destructions in subjects with cognitive dysfunction; (2) administration of amyloidogenic peptides with either full length or core hexapeptide structure consistently ameliorates signs of experimental autoimmune encephalomyelitis; (3) experimental autoimmune encephalomyelitis is exacerbated following genetic deletion of amyloid precursor proteins; (4) absence of islet amyloid coexists with T-cell-mediated insulitis in autoimmune diabetes and autoimmune polyendocrine syndrome; (5) use of islet amyloid polypeptide agonists rather than antagonists improves diabetes care; and (6) common suppressive signaling pathways by regulatory T cells are activated in both local and systemic amyloidosis. These findings indicate dual modulation activity mediated by amyloid protein monomers, oligomers, and fibrils to maintain immune homeostasis.

View Article and Find Full Text PDF

Protein misfolding and amyloid formation are associated with various human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Type-2 Diabetes mellitus (T2DM). No disease-modifying therapeutics are available for them. Despite the lack of sequence homology between the corresponding proteins, aromatic residues are recognized as common key motifs in the formation and stabilization of amyloid structures via π-π stacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!