Learning discriminative feature representations has shown remarkable importance due to its promising performance for machine learning problems. This paper presents a discriminative data representation learning framework by employing a simple yet powerful marginal regression function with probabilistic graphical structure adaptation. A marginally structured representation learning (MSRL) method is proposed by seamlessly incorporating distinguishable regression targets analysis, graph structure adaptation, and robust linear structural learning into a joint framework. Specifically, MSRL learns marginal regression targets from data rather than exploiting the conventional zero-one matrix that greatly hinders the freedom of regression fitness and degrades the performance of regression results. Meanwhile, an optimized graph regularization term with self-improving adaptation is constructed based on probabilistic connection knowledge to improve the compactness of the learned representation. Additionally, the regression targets are further predicted by utilizing the explanatory factors from the latent subspace of data, which can uncover the underlying feature correlations to enhance the reliability. The resulting optimization problem can be elegantly solved by an efficient iterative algorithm. Finally, the proposed method is evaluated by eight diverse but related tasks, including object, face, texture, and scene, categorization data sets. The encouraging experimental results and the explicit theoretical analysis demonstrate the efficacy of the proposed representation learning method in comparison with state-of-the-art algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2017.2772264 | DOI Listing |
Sci Rep
January 2025
School of Mathematics and Statistics, Shaoguan University, Shaoguan, 512005, China.
Recently, deep latent variable models have made significant progress in dealing with missing data problems, benefiting from their ability to capture intricate and non-linear relationships within the data. In this work, we further investigate the potential of Variational Autoencoders (VAEs) in addressing the uncertainty associated with missing data via a multiple importance sampling strategy. We propose a Missing data Multiple Importance Sampling Variational Auto-Encoder (MMISVAE) method to effectively model incomplete data.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
Recent barcoding technologies allow reconstructing lineage trees while capturing paired single-cell RNA-sequencing (scRNA-seq) data. Such datasets provide opportunities to compare gene expression memory maintenance through lineage branching and pinpoint critical genes in these processes. Here we develop Permutation, Optimization, and Representation learning based single Cell gene Expression and Lineage ANalysis (PORCELAN) to identify lineage-informative genes or subtrees where lineage and expression are tightly coupled.
View Article and Find Full Text PDFComput Biol Med
January 2025
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China. Electronic address:
Breast cancer poses a significant health threat worldwide. Contrastive learning has emerged as an effective method to extract critical lesion features from mammograms, thereby offering a potent tool for breast cancer screening and analysis. A crucial aspect of contrastive learning is negative sampling, where the selection of hard negative samples is essential for driving representations to retain detailed lesion information.
View Article and Find Full Text PDFPsychol Rev
January 2025
Department of Cognitive Science, University of California, San Diego.
It has long been hypothesized that episodic memory supports adaptive decision making by enabling mental simulation of future events. Yet, attempts to characterize this process are surprisingly rare. On one hand, memory research is often carried out in settings that are far removed from ecological contexts of decision making.
View Article and Find Full Text PDFPLoS One
January 2025
School of Emergency Management, Institute of Disaster Prevention, Sanhe, Hebei, China.
With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!