This paper concerns the problem of facial landmark detection. We provide a unique new analysis of the features produced at intermediate layers of a convolutional neural network (CNN) trained to regress facial landmark coordinates. This analysis shows that while being processed by the CNN, face images can be partitioned in an unsupervised manner into subsets containing faces in similar poses (i.e., 3D views) and facial properties (e.g., presence or absence of eye-wear). Based on this finding, we describe a novel CNN architecture, specialized to regress the facial landmark coordinates of faces in specific poses and appearances. To address the shortage of training data, particularly in extreme profile poses, we additionally present data augmentation techniques designed to provide sufficient training examples for each of these specialized sub-networks. The proposed Tweaked CNN (TCNN) architecture is shown to outperform existing landmark detection methods in an extensive battery of tests on the AFW, ALFW, and 300W benchmarks. Finally, to promote reproducibility of our results, we make code and trained models publicly available through our project webpage.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2017.2787130DOI Listing

Publication Analysis

Top Keywords

facial landmark
16
landmark detection
12
convolutional neural
8
regress facial
8
landmark coordinates
8
facial
5
detection tweaked
4
tweaked convolutional
4
neural networks
4
networks paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!