In this paper, a decomposition-based artificial bee colony (ABC) algorithm is proposed to handle many-objective optimization problems (MaOPs). In the proposed algorithm, an MaOP is converted into a number of subproblems which are simultaneously optimized by a modified ABC algorithm. The hybrid of the decomposition-based algorithm and the ABC algorithm can make full use of the advantages of both algorithms. The former, with the help of a set of weight vectors, is able to maintain a good diversity among solutions, while the latter, with a fast convergence speed, is highly effective when solving a scalar optimization problem. Therefore, the convergence and diversity would be well balanced in the new algorithm. Moreover, subproblems in the proposed algorithm are handled unequally, and computational resources are dynamically allocated through specially designed onlooker bees and scout bees. The proposed algorithm is compared with five state-of-the-art many-objective evolutionary algorithms on 13 test problems with up to 50 objectives. It is shown by the experimental results that the proposed algorithm performs better than or comparably to other algorithms in terms of both quality of the final solution set and efficiency of the algorithms. Finally, as shown by the Wilcoxon signed-rank test results, the onlooker bees and scout bees indeed contribute to performance improvements of the algorithm. Given the high quality of solutions and the rapid running speed, the proposed algorithm could be a promising tool when approximating a set of well-converged and properly distributed nondominated solutions for MaOPs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2017.2772250DOI Listing

Publication Analysis

Top Keywords

proposed algorithm
20
algorithm
12
abc algorithm
12
artificial bee
8
bee colony
8
onlooker bees
8
bees scout
8
scout bees
8
proposed
6
decomposition-based many-objective
4

Similar Publications

Health care decisions are increasingly informed by clinical decision support algorithms, but these algorithms may perpetuate or increase racial and ethnic disparities in access to and quality of health care. Further complicating the problem, clinical data often have missing or poor quality racial and ethnic information, which can lead to misleading assessments of algorithmic bias. We present novel statistical methods that allow for the use of probabilities of racial/ethnic group membership in assessments of algorithm performance and quantify the statistical bias that results from error in these imputed group probabilities.

View Article and Find Full Text PDF

Background: Cancer classification has consistently been a challenging problem, with the main difficulties being high-dimensional data and the collection of patient samples. Concretely, obtaining patient samples is a costly and resource-intensive process, and imbalances often exist between samples. Moreover, expression data is characterized by high dimensionality, small samples and high noise, which could easily lead to struggles such as dimensionality catastrophe and overfitting.

View Article and Find Full Text PDF

Background: The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this.

View Article and Find Full Text PDF

Trains scheduling problem with multiple lines.

Sci Rep

December 2024

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

This study explores the problem of train scheduling (or) train timetabling and its impact on the administration of railway management. This is a highly dependable and effective public transportation system. The problem considers both single and multiple tracks along with multiple platforms with varying train capacities (like speed, passengers, and so on).

View Article and Find Full Text PDF

Deep Convolutional Neural Networks (DCNNs), due to their high computational and memory requirements, face significant challenges in deployment on resource-constrained devices. Network Pruning, an essential model compression technique, contributes to enabling the efficient deployment of DCNNs on such devices. Compared to traditional rule-based pruning methods, Reinforcement Learning(RL)-based automatic pruning often yields more effective pruning strategies through its ability to learn and adapt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!